39 research outputs found

    Precipitate characterization in model Al-Zn-Mg-(Cu) alloys using small-angle x-ray scattering

    Get PDF
    Model 7000 series alloys with and without copper were fabricated into sheets to study precipitation hardening behavior under isothermal aging conditions. Samples of each alloy were subjected to 3 h annealing treatments at various temperatures to produce a range of precipitate size distributions. Hardness, electrical conductivity, and small-angle X-ray scattering (SAXS) were used to characterize the aging behavior of the two alloys. Precipitate size distributions were modeled from the scattering curves for each annealing condition using a maximum entropy method (MEM) and compared to select transmission electron microscopy (TEM) results. The measured average precipitate diameters from TEM were in good agreement with the average precipitate diameters determined from the scattering curves

    Bone cell-independent benefits of raloxifene on the skeleton: A novel mechanism for improving bone material properties

    Get PDF
    Authors' accepted manuscript. Bone Biology Laboratory http://www.iupui.edu/~bonelab/ Department of Anatomy and Cell Biology Indiana University School of Medicine Department of Biomedical Engineering IUPUIRaloxifene is an FDA approved agent used to treat bone loss and decrease fracture risk. In clinical trials and animal studies, raloxifene reduces fracture risk and improves bone mechanical properties, but the mechanisms of action remain unclear because these benefits occur largely independent of changes to bone mass. Using a novel experimental approach, machined bone beams, both from mature male canine and human male donors, were depleted of living cells and then exposed to raloxifene ex vivo. Our data show that ex vivo exposure of non-viable bone to raloxifene improves intrinsic toughness, both in canine and human cortical bone beams tested by 4-point bending. These effects are cell-independent and appear to be mediated by an increase in matrix bound water, assessed using basic gravimetric weighing and sophisticated ultrashort echo time magnetic resonance imaging. The hydroxyl groups (-OH) on raloxifene were shown to be important in both the water and toughness increases. Wide and small angle x-ray scattering patterns during 4-pt bending show that raloxifene alters the transfer of load between the collagen matrix and the mineral crystals, placing lower strains on the mineral, and allowing greater overall deformation prior to failure. Collectively, these findings provide a possible mechanistic explanation for the therapeutic effect of raloxifene and more importantly identify a cell-independent mechanism that can be utilized for novel pharmacological approaches for enhancing bone strength.The authors would like to thank Dr. Paul K. Hansma (Department of Physics, University of California, Santa Barbara), for suggesting the soaking technique and Dr. John Okasinski, Advanced Photon Source, for helping collect the WAXS data. Raloxifene was kindly provided by Eli Lilly (Indianapolis, IN, USA) under a Material Transfer Agreement to D.B.B. Eli Lilly was not involved in the study design, analyses or interpretation of the results. We are grateful to Dr. Susan J. Gunst for sharing dog tissue. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This work was supported by NIH grants to D.B.B. and M.R.A

    Design, fabrication and application of GaN-based micro-LED arrays with individual addressing by n-electrodes

    Get PDF
    We demonstrate the development, performance and application of a GaN-based micro-light emitting diode (μLED) array sharing a common p-electrode (anode), and with individually addressable nelectrodes (cathodes). Compared to conventional GaN-based LED arrays, this array design employs a reversed structure of common and individual electrodes, which makes it innovative and compatible with n-type metal-oxide-semiconductor (NMOS) transistor-based drivers for faster modulation. Excellent performance characteristics are illustrated by an example array emitting at 450 nm. At a current density of 17.7 kA/cm2 in direct-current operation, the optical power and small signal electrical-to-optical modulation bandwidth of a single LED element with 24 μm diameter are over 2.0 mW and 440 MHz, respectively. The optimized fabrication process also ensures a high yield of working μLED elements per array, and excellent element-to-element uniformity of electrical/optical characteristics. Results on visible light communication are presented as an application of an array integrated with an NMOS driver. Data transmission at several hundred Mbps without bit error is achieved for single and multiple-μLED-element operations, under an on-off-keying modulation scheme. Transmission of stepped sawtooth waveforms is also demonstrated to confirm that the μLED elements can transmit discrete multi-level signals

    Design, fabrication and application of GaN-based micro-LED arrays with individual addressing by n-electrodes

    Get PDF
    We demonstrate the development, performance and application of a GaN-based micro-light emitting diode (μLED) array sharing a common p-electrode (anode), and with individually addressable nelectrodes (cathodes). Compared to conventional GaN-based LED arrays, this array design employs a reversed structure of common and individual electrodes, which makes it innovative and compatible with n-type metal-oxide-semiconductor (NMOS) transistor-based drivers for faster modulation. Excellent performance characteristics are illustrated by an example array emitting at 450 nm. At a current density of 17.7 kA/cm2 in direct-current operation, the optical power and small signal electrical-to-optical modulation bandwidth of a single LED element with 24 μm diameter are over 2.0 mW and 440 MHz, respectively. The optimized fabrication process also ensures a high yield of working μLED elements per array, and excellent element-to-element uniformity of electrical/optical characteristics. Results on visible light communication are presented as an application of an array integrated with an NMOS driver. Data transmission at several hundred Mbps without bit error is achieved for single and multiple-μLED-element operations, under an on-off-keying modulation scheme. Transmission of stepped sawtooth waveforms is also demonstrated to confirm that the μLED elements can transmit discrete multi-level signals

    Development, performance and application of novel GaN-based micro-LED arrays with individually addressable n-electrodes

    Get PDF
    We demonstrate the development, performance and application of a GaN-based micro-light emitting diode array sharing a common p-electrode with individual-addressed n-electrodes. These individually-addressed n-electrodes minimize the series-resistance difference from conductive paths, and offer compatibility with n-type metal-oxide-semiconductor transistor-based drivers for faster modulation

    Predicting Human Nucleosome Occupancy from Primary Sequence

    Get PDF
    Nucleosomes are the fundamental repeating unit of chromatin and comprise the structural building blocks of the living eukaryotic genome. Micrococcal nuclease (MNase) has long been used to delineate nucleosomal organization. Microarray-based nucleosome mapping experiments in yeast chromatin have revealed regularly-spaced translational phasing of nucleosomes. These data have been used to train computational models of sequence-directed nuclesosome positioning, which have identified ubiquitous strong intrinsic nucleosome positioning signals. Here, we successfully apply this approach to nucleosome positioning experiments from human chromatin. The predictions made by the human-trained and yeast-trained models are strongly correlated, suggesting a shared mechanism for sequence-based determination of nucleosome occupancy. In addition, we observed striking complementarity between classifiers trained on experimental data from weakly versus heavily digested MNase samples. In the former case, the resulting model accurately identifies nucleosome-forming sequences; in the latter, the classifier excels at identifying nucleosome-free regions. Using this model we are able to identify several characteristics of nucleosome-forming and nucleosome-disfavoring sequences. First, by combining results from each classifier applied de novo across the human ENCODE regions, the classifier reveals distinct sequence composition and periodicity features of nucleosome-forming and nucleosome-disfavoring sequences. Short runs of dinucleotide repeat appear as a hallmark of nucleosome-disfavoring sequences, while nucleosome-forming sequences contain short periodic runs of GC base pairs. Second, we show that nucleosome phasing is most frequently predicted flanking nucleosome-free regions. The results suggest that the major mechanism of nucleosome positioning in vivo is boundary-event-driven and affirm the classical statistical positioning theory of nucleosome organization
    corecore