27 research outputs found

    Neuroprotective peptide ADNF-9 in fetal brain of C57BL/6 mice exposed prenatally to alcohol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A derived peptide from activity-dependent neurotrophic factor (ADNF-9) has been shown to be neuroprotective in the fetal alcohol exposure model. We investigated the neuroprotective effects of ADNF-9 against alcohol-induced apoptosis using TUNEL staining. We further characterize in this study the proteomic architecture underlying the role of ADNF-9 against ethanol teratogenesis during early fetal brain development using liquid chromatography in conjunction with tandem mass spectrometry (LC-MS/MS).</p> <p>Methods</p> <p>Pregnant C57BL/6 mice were exposed from embryonic days 7-13 (E7-E13) to a 25% ethanol-derived calorie [25% EDC, Alcohol (ALC)] diet, a 25% EDC diet simultaneously administered i.p. ADNF-9 (ALC/ADNF-9), or a pair-fed (PF) liquid diet. At E13, fetal brains were collected from 5 dams from each group, weighed, and frozen for LC-MS/MS procedure. Other fetal brains were fixed for TUNEL staining.</p> <p>Results</p> <p>Administration of ADNF-9 prevented alcohol-induced reduction in fetal brain weight and alcohol-induced increases in cell death. Moreover, individual fetal brains were analyzed by LC-MS/MS. Statistical differences in the amounts of proteins between the ALC and ALC/ADNF-9 groups resulted in a distinct data-clustering. Significant upregulation of several important proteins involved in brain development were found in the ALC/ADNF-9 group as compared to the ALC group.</p> <p>Conclusion</p> <p>These findings provide information on potential mechanisms underlying the neuroprotective effects of ADNF-9 in the fetal alcohol exposure model.</p

    Lesions in Phycoerythrin Chromophore Biosynthesis in Fremyella diplosiphon Reveal Coordinated Light Regulation of Apoprotein and Pigment Biosynthetic Enzyme Gene Expression

    No full text
    We have characterized the regulation of the expression of the pebAB operon, which encodes the enzymes required for phycoerythrobilin synthesis in the filamentous cyanobacterium Fremyella diplosiphon. The expression of the pebAB operon was found to be regulated during complementary chromatic adaptation, the system that controls the light responsiveness of genes that encode several light-harvesting proteins in F. diplosiphon. Our analyses of pebA mutants demonstrated that although the levels of phycoerythrin and its associated linker proteins decreased in the absence of phycoerythrobilin, there was no significant modulation of the expression of pebAB and the genes that encode phycoerythrin. Instead, regulation of the expression of these genes is coordinated at the level of RNA accumulation by the recently discovered activator CpeR

    Chelation-induced diradical formation as an approach to modulation of the amyloid-?? aggregation pathway

    No full text
    Current approaches toward modulation of metal-induced A beta aggregation pathways involve the development of small molecules that bind metal ions, such as Cu(II) and Zn(II), and interact with Ab. For this effort, we present the enediyne-containing ligand (Z)-N, N&apos;-bis[1-pyridin-2-yl-meth(E)-ylidene]oct-4-ene- 2,6-diyne-1,8-diamine (PyED), which upon chelation of Cu(II) and Zn(II) undergoes Bergmancyclization to yield diradical formation. The ability of this chelation-triggered diradical to modulate Ab aggregation is evaluated relative to the non-radical generating control pyridine-2-ylmethyl(2-{[(pyridine-2-ylmethylene)-amino]-methyl}-benzyl)-amine (PyBD). Variable-pH, ligand UV-vis titrations reveal pK(a) = 3.81(2) for PyBD, indicating it exists mainly in the neutral form at experimental pH. Lipinski&apos;s rule parameters and evaluation of blood-brain barrier (BBB) penetration potential by the PAMPA-BBB assay suggest that PyED may be CNS+ and penetrate the BBB. Both PyED and PyBD bind Zn(II) and Cu(II) as illustrated by bathochromic shifts of their UV-vis features. Speciation diagrams indicate that Cu(II)PyBD is the major species at pH 6.6 with a nanomolar K-d, suggesting the ligand may be capable of interacting with Cu(II)-A beta species. In the presence of A beta(40/42) under hyperthermic conditions (43 degrees C), the radical-generating PyED demonstrates markedly enhanced activity (2-24 h) toward the modulation of A beta species as determined by gel electrophoresis. Correspondingly, transmission electron microscopy images of these samples show distinct morphological changes to the fibril structure that are most prominent for Cu(II)-A beta cases. The loss of CO2 from the metal binding region of A beta in MALDI-TOF mass spectra further suggests that metal-ligand-A beta interaction with subsequent radical formation may play a role in the aggregation pathway modulation.close

    Synergism between genome sequencing, tandem mass spectrometry and bio-inspired synthesis reveals insights into nocardioazine B biogenesis

    No full text
    Marine actinomycete-derived natural products continue to inspire chemical and biological investigations. Nocardioazines A and B (3 and 4), from Nocardiopsis sp. CMB-M0232, are structurally unique alkaloids featuring a 2,5-diketopiperazine (DKP) core functionalized with indole C3-prenyl as well as indole C3- and N-methyl groups. The logic of their assembly remains cryptic. Bioinformatics analyses of the Nocardiopsis sp. CMB-M0232 draft genome afforded the noz cluster, split across two regions of the genome, and encoding putative open reading frames with roles in nocardioazine biosynthesis, including cyclodipeptide synthase (CDPS), prenyltransferase, methyltransferase, and cytochrome P450 homologs. Heterologous expression of a twelve gene contig from the noz cluster in Streptomyces coelicolor resulted in accumulation of cyclo-l-Trp-l-Trp DKP (5). This experimentally connected the noz cluster to indole alkaloid natural product biosynthesis. Results from bioinformatics analyses of the noz pathway along with challenges in actinomycete genetics prompted us to use asymmetric synthesis and mass spectrometry to determine biosynthetic intermediates in the noz pathway. The structures of hypothesized biosynthetic intermediates 5 and 12-17 were firmly established through chemical synthesis. LC-MS and MS-MS comparison of these synthetic compounds with metabolites present in chemical extracts from Nocardiopsis sp. CMB-M0232 revealed which of these hypothesized intermediates were relevant in the nocardioazine biosynthetic pathway. This established the early and mid-stages of the biosynthetic pathway, demonstrating that Nocardiopsis performs indole C3-methylation prior to indole C3-normal prenylation and indole N1′-methylation in nocardioazine B assembly. These results highlight the utility of merging bioinformatics analyses, asymmetric synthetic approaches, and mass spectrometric metabolite profiling in probing natural product biosynthesis

    Cooper_et_al_2012_data

    No full text
    Proportions of each of the phospholipids in lipid extracts from each isofemale line after development at 16 and 25C. See the read me file for explicit details

    Phycoerythrin-specific bilin lyase-isomerase controls blue-green chromatic acclimation in marine Synechococcus.

    Get PDF
    International audienceThe marine cyanobacterium Synechococcus is the second most abundant phytoplanktonic organism in the world's oceans. The ubiquity of this genus is in large part due to its use of a diverse set of photosynthetic light-harvesting pigments called phycobiliproteins, which allow it to efficiently exploit a wide range of light colors. Here we uncover a pivotal molecular mechanism underpinning a widespread response among marine Synechococcus cells known as "type IV chromatic acclimation" (CA4). During this process, the pigmentation of the two main phycobiliproteins of this organism, phycoerythrins I and II, is reversibly modified to match changes in the ambient light color so as to maximize photon capture for photosynthesis. CA4 involves the replacement of three molecules of the green light-absorbing chromophore phycoerythrobilin with an equivalent number of the blue light-absorbing chromophore phycourobilin when cells are shifted from green to blue light, and the reverse after a shift from blue to green light. We have identified and characterized MpeZ, an enzyme critical for CA4 in marine Synechococcus. MpeZ attaches phycoerythrobilin to cysteine-83 of the α-subunit of phycoerythrin II and isomerizes it to phycourobilin. mpeZ RNA is six times more abundant in blue light, suggesting that its proper regulation is critical for CA4. Furthermore, mpeZ mutants fail to normally acclimate in blue light. These findings provide insights into the molecular mechanisms controlling an ecologically important photosynthetic process and identify a unique class of phycoerythrin lyase/isomerases, which will further expand the already widespread use of phycoerythrin in biotechnology and cell biology applications

    Interplay between differentially expressed enzymes contributes to light color acclimation in marine Synechococcus

    No full text
    Marine Synechococcus, a globally important group of cyanobacteria, thrives in various light niches in part due to its varied photosynthetic light-harvesting pigments. Many Synechococcus strains use a process known as chromatic acclimation to optimize the ratio of two chromophores, green-light–absorbing phycoerythrobilin (PEB) and blue-light–absorbing phycourobilin (PUB), within their light-harvesting complexes. A full mechanistic understanding of how Synechococcus cells tune their PEB to PUB ratio during chromatic acclimation has not yet been obtained. Here, we show that interplay between two enzymes named MpeY and MpeZ controls differential PEB and PUB covalent attachment to the same cysteine residue. MpeY attaches PEB to the light-harvesting protein MpeA in green light, while MpeZ attaches PUB to MpeA in blue light. We demonstrate that the ratio of mpeY to mpeZ mRNA determines if PEB or PUB is attached. Additionally, strains encoding only MpeY or MpeZ do not acclimate. Examination of strains of Synechococcus isolated from across the globe indicates that the interplay between MpeY and MpeZ uncovered here is a critical feature of chromatic acclimation for marine Synechococcus worldwide
    corecore