467 research outputs found

    Links between Climate, Malaria, and Wetlands in the Amazon Basin

    Get PDF
    Climate changes are altering patterns of temperature and precipitation, potentially affecting regions of malaria transmission. We show that areas of the Amazon Basin with few wetlands show a variable relationship between precipitation and malaria, while areas with extensive wetlands show a negative relationship with malaria incidence

    Habitat alteration in coastal and marine habitats following dam removal on the Elwha River

    Get PDF
    The ongoing removal of the Elwha and Glines Canyon dams on the Elwha River have mobilized a massive amount of sediment that has accumulated and altered habitats throughout the watershed. Accumulation has been particularly high in the estuaries and nearshore, significantly altering physical and biological conditions. We have been measuring a suite of parameters since 2010 to better understand how sediment accumulation and suspended sediment alter physical and biological conditions, and how those changes alter habitat conditions. In estuarine and nearshore habitats we are measuring salinity, temperature, turbidity, primary productivity, light availability, and nutrient concentration. In the estuary we are additionally measuring pH, dissolved oxygen concentration; in the nearshore we are additionally measuring current direction and speed, wave height and direction, and sediment deposition and residence time. Our data show that conditions in the estuary changed from a tidally influenced, brackish estuary to a freshwater estuary that is episodically isolated from the river within one year of dam removal. In addition to the fine sediment that has accumulated in the estuary, this hydrologic change has resulted in ecological changes to the estuary, including a shift in species composition of fish and invertebrates. In the nearshore, light availability has decreased during the dam removal process, and the incidence of seafloor sedimentation has increased, which is ephemeral owing to winnowing from periodic strong currents. Burial, scouring, and reduced light availability caused by increased sedimentation are likely negatively impacting algal communities in the nearshore that are within the Elwha River plume. This study advances our understanding of how the timing and magnitude of sediment delivery affects habitat availability, species persistence, and community composition change with implications to future land-use changes

    Changes in Kelp and Other Seaweeds Following Elwha Dam Removal

    Get PDF
    Kelps are ecologically important seaweeds that dominated the nearshore vegetation community prior to dam removal on the Elwha River. Dam removal is expected to trigger a shift from kelps to vegetation types that are characteristic of soft-sediment communities through restoring natural sediment supply. This study is investigating how nearshore vegetation responds to restoration of the natural sediment regime, both initially when large amounts of sediment entrained in the reservoirs are released and over longer time periods. We assessed vegetation at multiple spatial scales using three approaches. First, we measured floating kelp canopy area using aerial photography. Second, we assessed the abundance of understory kelp and seagrasses with towed videography along 50 km of shoreline. Third, scuba divers recorded density of kelp species and other seaweeds along 10 km of shoreline bracketing the river mouth. Results show profound changes in vegetation and a strong gradient in magnitude of impact related to distance from the river mouth. Floating kelp canopy area decreased 74% in the Elwha Drift Cell in the first year following project initiation (year 1), with lower magnitude losses throughout the Strait of Juan de Fuca. Area of prostrate kelps decreased by 45% (400 ha) and of stipitate kelps by 30% (130 ha) in the Elwha Drift Cell in year 1. Mean kelp density near the river mouth decreased 77% in year 1 and 95% in year 2. While all 10 kelp species declined, annuals were more impacted than perennials. In contrast to the general decline, juveniles of several kelp species appeared in late August of year 2, a substantial delay compared to typical spring timing of juvenile growth. What caused the large kelp losses and apparent delay of juvenile growth? Likely candidates include light reduction from the river plume and scour, burial or settlement inhibition from deposition. These candidates will be explored using physical data from the multidisciplinary research effort

    Interplay between IL-10, IFN-Îł, IL-17A and PD-1 Expressing EBNA1-Specific CD4+ and CD8+ T Cell Responses in the Etiologic Pathway to Endemic Burkitt Lymphoma

    Full text link
    Children diagnosed with endemic Burkitt lymphoma (eBL) are deficient in interferon-γ (IFN-γ) responses to Epstein–Barr Nuclear Antigen1 (EBNA1), the viral protein that defines the latency I pattern in this B cell tumor. However, the contributions of immune-regulatory cytokines and phenotypes of the EBNA1-specific T cells have not been characterized for eBL. Using a bespoke flow cytometry assay we measured intracellular IFN-γ, IL-10, IL-17A expression and phenotyped CD4+ and CD8+ T cell effector memory subsets specific to EBNA1 for eBL patients compared to two groups of healthy children with divergent malaria exposures. In response to EBNA1 and a malaria antigen (PfSEA-1A), the three study groups exhibited strikingly different cytokine expression and T cell memory profiles. EBNA1-specific IFN-γ-producing CD4+ T cell response rates were lowest in eBL (40%) compared to children with high malaria (84%) and low malaria (66%) exposures (p < 0.0001 and p = 0.0004, respectively). However, eBL patients did not differ in CD8+ T cell response rates or the magnitude of IFN-γ expression. In contrast, eBL children were more likely to have EBNA1-specific CD4+ T cells expressing IL-10, and less likely to have polyfunctional IFN-γ+IL-10+ CD4+ T cells (p = 0.02). They were also more likely to have IFN-γ+IL-17A+, IFN-γ+ and IL-17A+ CD8+ T cell subsets compared to healthy children. Cytokine-producing T cell subsets were predominantly CD45RA+CCR7+ TNAIVE-LIKE cells, yet PD-1, a marker of persistent activation/exhaustion, was more highly expressed by the central memory (TCM) and effector memory (TEM) T cell subsets. In summary, our study suggests that IL-10 mediated immune regulation and depletion of IFN-γ+ EBNA1-specific CD4+ T cells are complementary mechanisms that contribute to impaired T cell cytotoxicity in eBL pathogenesis

    Education and training in radiation protection in Europe: results from the EURAMED Rocc-n-Roll project survey

    Get PDF
    Purpose: To analyse the existing radiation protection (RP) education and training (E&T) capabilities in the European Union and identify associated needs, problems and challenges. Method: An online survey was disseminated via the EURAMED Rocc-n-Roll consortium network and prominent medical societies in the field of radiological research. The survey sections analyse the RP E&T during undergraduate, residency/internship and continuous professional development; RP E&T problems and legal implementation. Differences were analysed by European geographic regions, profession, years of professional experience and main area of practice/research. Results: The majority of the 550 respondents indicated that RP topics are part of undergraduate curricula in all courses for their profession and country (55%); however, hands-on practical training is not included according to 30% of the respondents. The lack of E&T, practical aspects in current E&T, and mandatory continuing E&T were considered the major problems. The legal requirement that obtained higher implementation score was the inclusion of the practical aspects of medical radiological procedures on education (86%), and lower score was obtained for the inclusion of RP E&T on medical and dental school curriculums (61%). Conclusions: A heterogeneity in RP E&T during undergraduate, residency/internship and continuous professional development is evident across Europe. Differences were noted per area of practice/research, profession, and European geographic region. A large variation in RP E&T problem rating was also obtained.European Commission Horizon 202

    Education and training in radiation protection in Europe: an analysis from the EURAMED rocc-n-roll project

    Get PDF
    Background: A Strengths, weaknesses, opportunities and threats analysis was performed to understand the status quo of education and training in radiation protection (RP) and to develop a coordinated European approach to RP training needs based on stakeholder consensus and existing activities in the field. Fourteen team members represented six European professional societies, one European voluntary organisation, two international healthcare organisations and five professions, namely: Medical Physicists; Nuclear Medicine Physicians; Radiologists; Radiation Oncologists and Radiographers. Four subgroups analysed the “Strengths”, “Weaknesses”, “Opportunities” and “Threats” related to E&T in RP developed under previous European Union (EU) programmes and on the Guidelines on Radiation Protection Education and Training of Medical Professionals in the EU. Results: Consensus agreement identified four themes for strengths and opportunities, namely: (1) existing structures and training recommendations; (2) RP training needs assessment and education & training (E&T) model(s) development; (3) E&T dissemination, harmonisation, and accreditation; (4) financial supports. Weaknesses and Threats analysis identified two themes: (1) awareness and prioritisation at a national/global level and (2) awareness and prioritisation by healthcare professional groups and researchers. Conclusions: A lack of effective implementation of RP principles in daily practice was identified. EuRnR strategic planning needs to consider processes at European, national and local levels. Success is dependent upon efficient governance structures and expert leadership. Financial support is required to allow the stakeholder professional agencies to have sufficient resources to achieve a pan European radiation protection training network which is sustainable and accredited across multiple national domains.European Commission Horizon 202

    Summary: Combating Climate Change with Section 115 of the Clean Air Act

    Get PDF
    The scale and scope of the climate crisis calls for comprehensive nationwide efforts to reduce greenhouse gas emissions. New legislation, passed by Congress and signed by the President, is the first and best option for climate action at the federal level. This could be a version of the Green New Deal, a carbon tax, sectoral limits, an emissions cap with compliance trading, or another approach. What matters most is that the legislation effectively cut the greenhouse gas emissions driving the world’s temperatures ever higher. Unfortunately, the prospect for federal legislation is uncertain, while strong and decisive action is needed now. A president committed to tackling climate change will need a backup plan in case Congress remains gridlocked, one that relies on existing statutes to achieve the deep emission reductions the science says we need

    The SXS Collaboration catalog of binary black hole simulations

    Get PDF
    Accurate models of gravitational waves from merging black holes are necessary for detectors to observe as many events as possible while extracting the maximum science. Near the time of merger, the gravitational waves from merging black holes can be computed only using numerical relativity. In this paper, we present a major update of the Simulating eXtreme Spacetimes (SXS) Collaboration catalog of numerical simulations for merging black holes. The catalog contains 2018 distinct configurations (a factor of 11 increase compared to the 2013 SXS catalog), including 1426 spin-precessing configurations, with mass ratios between 1 and 10, and spin magnitudes up to 0.998. The median length of a waveform in the catalog is 39 cycles of the dominant ℓ=m=2\ell=m=2 gravitational-wave mode, with the shortest waveform containing 7.0 cycles and the longest 351.3 cycles. We discuss improvements such as correcting for moving centers of mass and extended coverage of the parameter space. We also present a thorough analysis of numerical errors, finding typical truncation errors corresponding to a waveform mismatch of ∌10−4\sim 10^{-4}. The simulations provide remnant masses and spins with uncertainties of 0.03% and 0.1% (90th90^{\text{th}} percentile), about an order of magnitude better than analytical models for remnant properties. The full catalog is publicly available at https://www.black-holes.org/waveforms .Comment: 33+18 pages, 13 figures, 4 tables, 2,018 binaries. Catalog metadata in ancillary JSON file. v2: Matches version accepted by CQG. Catalog available at https://www.black-holes.org/waveform
    • 

    corecore