10,288 research outputs found

    Stem cell mechanobiology

    No full text
    Stem cells are undifferentiated cells that are capable of proliferation, self-maintenance and differentiation towards specific cell phenotypes. These processes are controlled by a variety of cues including physicochemical factors associated with the specific mechanical environment in which the cells reside. The control of stem cell biology through mechanical factors remains poorly understood and is the focus of the developing field of mechanobiology. This review provides an insight into the current knowledge of the role of mechanical forces in the induction of differentiation of stem cells. While the details associated with individual studies are complex and typically associated with the stem cell type studied and model system adopted, certain key themes emerge. First, the differentiation process affects the mechanical properties of the cells and of specific subcellular components. Secondly, that stem cells are able to detect and respond to alterations in the stiffness of their surrounding microenvironment via induction of lineage-specific differentiation. Finally, the application of external mechanical forces to stem cells, transduced through a variety of mechanisms, can initiate and drive differentiation processes. The coalescence of these three key concepts permit the introduction of a new theory for the maintenance of stem cells and alternatively their differentiation via the concept of a stem cell 'mechano-niche', defined as a specific combination of cell mechanical properties, extracellular matrix stiffness and external mechanical cues conducive to the maintenance of the stem cell population.<br/

    Parity Measurement is Sufficient for Phase Estimation at the Quantum Cramer-Rao Bound for Path-Symmetric States

    Full text link
    In this letter, we show that for all the so-called path-symmetric states, the measurement of parity of photon number at the output of an optical interferometer achieves maximal phase sensitivity at the quantum Cramer-Rao bound. Such optimal phase sensitivity with parity is attained at a suitable bias phase, which can be determined a priori. Our scheme is applicable for local phase estimation

    Partial synchronisation of stochastic oscillators through hydrodynamic coupling

    Full text link
    Holographic optical tweezers are used to construct a static bistable optical potential energy landscape where a Brownian particle experiences restoring forces from two nearby optical traps and undergoes thermally activated transitions between the two energy minima. Hydrodynamic coupling between two such systems results in their partial synchronisation. This is interpreted as an emergence of higher mobility pathways, along which it is easier to overcome barriers to structural rearrangement.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let

    An Invisible Quantum Tripwire

    Get PDF
    We present here a quantum tripwire, which is a quantum optical interrogation technique capable of detecting an intrusion with very low probability of the tripwire being revealed to the intruder. Our scheme combines interaction-free measurement with the quantum Zeno effect in order to interrogate the presence of the intruder without interaction. The tripwire exploits a curious nonlinear behaviour of the quantum Zeno effect we discovered, which occurs in a lossy system. We also employ a statistical hypothesis testing protocol, allowing us to calculate a confidence level of interaction-free measurement after a given number of trials. As a result, our quantum intruder alert system is robust against photon loss and dephasing under realistic atmospheric conditions and its design minimizes the probabilities of false positives and false negatives as well as the probability of becoming visible to the intruder.Comment: Improved based on reviewers comments; 5 figure

    The Evolution of Active Droplets in Chemorobotic Platforms

    Get PDF
    There is great interest in oil-in-water droplets as simple systems that display astonishingly complex behaviours. Recently, we reported a chemorobotic platform capable of autonomously exploring and evolving the behaviours these droplets can exhibit. The platform enabled us to undertake a large number of reproducible experiments, allowing us to probe the non-linear relationship between droplet composition and behaviour. Herein we introduce this work, and also report on the recent developments we have made to this system. These include new platforms to simultaneously evolve the droplets’ physical and chemical environments and the inclusion of selfreplicating molecules in the droplets

    How has the Louisiana Scholarship Program Affected Students? A Comprehensive Summary of Effects after Four Years

    Get PDF
    School choice has long been a subject of robust debate. Private school vouchers—programs providing public funds for students to attend K-12 private schools—tend to be the most contentious form of school choice. Over the past three years, our research team has released a series of reports examining how the LSP has affected key student and community conditions
    corecore