22 research outputs found
A model of secreting murine mammary epithelial HC11 cells comprising endogenous Bcrp/Abcg2 expression and function
Breast cancer resistance protein (Bcrp/Abcg2) and multidrug transporter 1 (Mdr1/Abcb1) are efflux proteins located in the apical membrane of mammary epithelial cells (MEC). Bcrp is induced in MEC during gestation and lactation, while Mdr1 is down-regulated during lactation. Numerous drugs and toxic compounds are known to be actively secreted into milk by Bcrp, but most chemicals have not been investigated in this respect, emphasizing the need for functional Bcrp studies in an established cell line with secreting mammary epithelial cells. The present study was undertaken to examine expressions of Bcrp and Mdr1 in mammary epithelial HC11 cells, derived from a mid-gestational murine mammary gland. In addition, Bcrp function was assessed by transport experiments with mitoxantrone (MX) in undifferentiated HC11 cells, in HC11 cells subjected to Bcrp RNA interference (RNAi) as well as in HC11 cells stimulated to differentiate by treatment with lactogenic hormones. Differentiated HC11 cells organized into alveolar-resembling structures and gene expression of the major milk protein B-casein was induced, whereas undifferentiated cells formed monolayers with lower B-casein expression. Bcrp and Mdr1 gene and protein were expressed in both undifferentiated and differentiated HC11 cells. Differentiation of HC11 cells resulted in increased Bcrp protein expression, while Mdr1 gene and protein expressions were reduced. The Bcrp inhibitor elacridar (GF120918) reduced secretion and increased accumulation of MX in both undifferentiated and differentiated HC11 cells. Silencing of the Bcrp gene caused an increased accumulation of MX. The results indicate that the HC11 cell model provides a promising tool to investigate transport of potential Bcrp substrates in mammary epithelial cells
Nickel permeation pathways in the small intestine and the olfactory system
For most people the body burden of nickel results primarily from ingestion ofthe metal in food and drinking water. In addition, inhaled air constitutes an important route of occupational nickel exposure.The present studies have aimed at characterizing the intestinal nickel absorption, and at determining whether nickel is taken up from the olfactory mucosa into the brain via the olfactory neurons and the mechanisms forsuch a potential uptake.Studies with perfused rat intestinal segmentsshowed that nickel absorption is higher in the jejunum than in the ileum. Several observations indicated that the nickel is absorbed actively through the jejunal epithelium. Studies with perfused intestinal segments of irondeficientrats indicated that nickel, at least partly, shares the transport mechanism for iron. In these perfusions the nickel concentration in the absorbates even exceeded the nickel concentration in the perfusates.Oral auminisuauon resulted m nrgner mcKei levels in several tissues of iron-deficient rats as compared to controls. These data support the assumption that nickel is taken up from the intestines by the iron transport mechanism. Studies in which rats were given nickel intraperitoneally indicate that the iron-status also affects the uptake of nickel from the blood into the tissues.Studies on the transport of nickel across Caco-2 cells showed a passage of the metal over the epithelium in both directions. The results indicated that die transport occurred actively, with no paracellular passage in intact monolayers, and that also in the Caco-2 cells the nickel may participate in an absorptive process for iron.Intranasal instillation of nickel in rats resulted in an uptake of the metal in the olfactory epithelium and a migration along primary olfactory axons to the glomeruli ofthe olfactory bulbs, and further to the rostral parts ofthe cerebral hemispheres.​​​​​​​Studies in pikes, in which nickel was applied in the olfactory chambers, showed that the metal was transported by slow axonal transport in the primary olfactory neurons. Cell fractionations and gel filtrations of the olfactory tissues of pikes and rats showed that nickel was bound both to particulate and cytosolic cellular constituents
Cadmium transport in a model of neonatal intestinal cells correlates to MRP1 and not DMT1 or FPN1
Newborns have a higher gastrointestinal uptake of cadmium than adults. In adults, the iron transporters DMT1 and FPN1 are involved in the intestinal absorption of cadmium, while in neonates, the mechanisms for cadmium absorption are unknown. We have investigated possible cadmium transporters in the neonatal intestine by applying a model of immature human intestinal epithelial Caco-2 cells. To mimic the continuous cadmium exposure via diet in neonates, cells were allowed to differentiate for 7 days in medium containing 1 μM CdCl2. A dramatic upregulation of the MT1 gene expression followed cadmium pretreatment, indicating a high sensitivity of the immature cells to cadmium. Cadmium pretreatment increased the basolateral efflux of109Cd, without causing any effects on the passive diffusion of mannitol or the transepithelial electrical resistance. The augmented transport of cadmium was correlated to an upregulation of MRP1 gene expression and increased activity of the efflux protein MRP1. No effects were observed on gene expression of the efflux proteins MRP2 and P-gp or the iron transporters DMT1, DMT1-IRE and FPN1. In conclusion, our data indicate that continuous cadmium exposure increases the absorption of the metal in immature intestinal cells and that MRP1 is involved in the intestinal cadmium absorption in newborns
PGP expression in Cooperia oncophora before and after ivermectin selection
The aim of this study was to investigate genetic selection and P-glycoprotein (PGP) expression in three different isolates of Cooperia oncophora before treatment and after ivermectin (IVM) injection. Adult parasites were recovered from nine calves experimentally infected with the isolates represented by one IVM susceptible laboratory isolate, and two field isolates showing signs of phenotypic macrocyclic lactone resilience according to the faecal egg count reduction test. Five males and five females per isolate were examined both pre- and post-IVM treatment giving a total of 60 worms. A sequence from C. oncophora (Con-pgp) was identified, showing 83% similarity to Pgp-9 of Caenorhabditis elegans. Primers specific to putative Con-pgp-9 mRNA were designed, generating a 153-bp PCR product. Total RNA was prepared from all worms, and Con-pgp-9 expression was measured by quantitative real-time reverse transcription PCR. Our results showed that mean PGP concentrations were four to five times higher in female as compared to male worms. No significant differences in gene expression between experimental groups pre- and post-IVM selection were detected. However, PGP gene expression tended to be increased by IVM treatment in male worms (p = 0.091), with 70% higher mean expression in treated than in untreated male worms. Amplified fragment length polymorphism analysis did not demonstrate any bottleneck effect within the different isolates post-treatment. The total mean gene diversity values were 0.158 and 0.153 before and after treatment, respectively. Inbreeding coefficient in subpopulations compared to total population F ST was 0.0112, suggesting no genetic differentiation between or within the investigated isolates in relation to treatment. In conclusion, comparison of Con-pgp-9 expression showed no significant difference before and after treatment, but some tendency towards increasing expression in male worms
Staphylococcus aureus and Lipopolysaccharide Modulate Gene Expressions of Drug Transporters in Mouse Mammary Epithelial Cells Correlation to Inflammatory Biomarkers.
Inflammation in the mammary gland (mastitis) is the most common disease in dairy herds worldwide, often caused by the pathogens Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Little is known about the effects of mastitis on drug transporters and the impact on transporter-mediated excretion of drugs into milk. We used murine mammary epithelial HC11 cells, after lactogenic differentiation into a secreting phenotype, and studied gene expressions of ABC- and SLC- transporters after treatment of cells with S. aureus and lipopolysaccharide, an endotoxin secreted by E. coli. The studied transporters were Bcrp, Mdr1, Mrp1, Oatp1a5, Octn1 and Oct1. In addition, Csn2, the gene encoding β-casein, was analyzed. As biomarkers of the inflammatory response, gene expressions of the cytokines Il6 and Tnfα and the chemokine Cxcl2 were determined. Our results show that S. aureus and LPS treatment of cells, at non-cytotoxic concentrations, induced an up-regulation of Mdr1 and of the inflammatory biomarkers, except that Tnfα was not affected by lipopolysaccharide. By simple regression analysis we could demonstrate statistically significant positive correlations between each of the transporters with each of the inflammatory biomarkers in cells treated with S. aureus. The coefficients of determination (R2) were 0.7-0.9 for all but one correlation. After treatment of cells with lipopolysaccharide, statistically significant correlations were only found between Mdr1 and the two parameters Cxcl2 and Il6. The expression of Csn2 was up-regulated in cells treated with S. aureus, indicating that the secretory function of the cells was not impaired. The strong correlation in gene expressions between transporters and inflammatory biomarkers may suggest a co-regulation and that the transporters have a role in the transport of cytokines and chemokines. Our results demonstrate that transporters in mammary cells can be affected by infection, which may have an impact on transport of essential compounds and contaminants into milk
Iron Homeostasis in Tissues Is Affected during Persistent Chlamydia pneumoniae Infection in Mice
Chlamydia pneumoniae (C. pneumoniae) may be a mediator in the pathogenesis of atherosclerosis. For its growth C. pneumoniae depends on iron (Fe), but how Fe changes in tissues during persistent infection or affects bacterial replication in tissues is unknown. C. pneumoniae-infected C57BL/6J mice were sacrificed on days 4, 8, 20, and 40. Mice had bacteria in the lungs and liver on all days. Inflammatory markers, chemokine Cxcl2 and interferon-gamma, were not affected in the liver on day 40. The copper (Cu)/zinc (Zn) ratio in serum, another marker of infection/inflammation, increased on day 4 and tended to increase again on day 40. The Fe markers, transferrin receptor (TfR), Hepcidin (Hamp1), and ferroportin 1 (Fpn1), increased in the liver on day 4 and then normalized except for TfR that tended to decrease. TfR responses were similar to Fe in serum that increased on day 4 but tended to decrease thereafter. In the liver, Fe was increased on day 4 and also on day 40. The reappearing increases in Cu/Zn on day 40 concomitant with the increase in liver Fe on day 40, even though TfR tended to decrease, and the fact that viable C. pneumoniae was present in the lungs and liver may indicate the early phase of activation of recurrent infection
Impact of iron status on cadmium uptake in suckling piglets
Low iron status is known to increase the uptake of dietary cadmium in both adolescents and adults and there are indications that cadmium is absorbed from the intestine by the two major iron transporters divalent metal transporter 1 (DMT1) and ferroportin 1 (FPN1), In addition, it has been suggested that duodenal metallothionein (MT) may limit the transport of cadmium across the intestinal epithelium. The present investigation was undertaken to examine whether iron status influences cadmium absorption in newborns by applying a model of suckling piglets and the possible roles of duodenal DMT1, FPN1 and MT. An oral cadmium dose (20 mu g/kg body weight) was given daily for 6 consecutive days on postnatal days (PNDs) 10- 15 to iron-deficient or iron-supplemented piglets. The cadmium dose was chosen to keep the cadmium level at a realistically low but still detectable level, and without inducing any adverse health effects in the piglets. As indicators of cadmium uptake, cadmium levels in blood and kidneys were measured on PND 16 by inductively coupled plasma-mass spectrometry (ICP-MS). Cadmium levels in blood were statistically significantly correlated with cadmium levels in kidneys. The cadmium uptake was not higher in iron-deficient suckling piglets; rather, we detected a higher cadmium uptake in the iron- supplemented ones. The expression and localisation of DMT1, FPN1 and MT were not affected by iron status and could therefore not explain the findings. Our results suggest that there are developmental differences in the handling of both iron and cadmium in newborns as compared to adults. (C) 2007 Elsevier Ireland Ltd. All rights reserved