347 research outputs found
Catalogue of solar activity during 1957
Catalog of major solar activity during 195
Solar activity catalogue. Volume I - Catalogue of solar activity during 1954 - 1956
Catalog of solar activity during 1954-195
Catalogue of Solar Activity During 1958, Volume III
Solar flares, sunspots, radio emissions, solar events, geomagnetic storms, solar-terrestrial effects, and balloon flights for 195
Solar activity catalogue. Volume 4 - Catalogue of solar activity during 1959
Solar activity catalog covering solar flares, terrestrial effects, plage regions, radio emissions, geomagnetic storms, and balloon flight
Catalogue of Solar Activity During 1960-1963, Volume V
Catalog on solar activity from 1960 to 196
LOOC UP: Locating and observing optical counterparts to gravitational wave bursts
Gravitational wave (GW) bursts (short duration signals) are expected to be
associated with highly energetic astrophysical processes. With such high
energies present, it is likely these astrophysical events will have signatures
in the EM spectrum as well as in gravitational radiation. We have initiated a
program, "Locating and Observing Optical Counterparts to Unmodeled Pulses in
Gravitational Waves" (LOOC UP) to promptly search for counterparts to GW burst
candidates. The proposed method analyzes near real-time data from the
LIGO-Virgo network, and then uses a telescope network to seek optical-transient
counterparts to candidate GW signals. We carried out a pilot study using
S5/VSR1 data from the LIGO-Virgo network to develop methods and software tools
for such a search. We will present the method, with an emphasis on the
potential for such a search to be carried out during the next science run of
LIGO and Virgo, expected to begin in 2009.Comment: 11 pages, 2 figures; v2) added acknowledgments, additional
references, and minor text changes v3) added 1 figure, additional references,
and minor text changes. v4) Updated references and acknowledgments. To be
published in the GWDAW 12 Conf. Proc. by Classical and Quantum Gravit
Low-latitude Scintillation weakening during sudden stratospheric warming events
Global Positioning System (GPS) L1-frequency (1.575 GHz) amplitude scintillations at São José dos Campos (23.1°S, 45.8°W, dip latitude 17.3°S), located under the southern crest of the equatorial ionization anomaly, are analyzed during the Northern Hemisphere winter sudden stratospheric warming (SSW) events of 2001/2002, 2002/2003, and 2012/2013. The events occurred during a period when moderate to strong scintillations are normally observed in the Brazilian longitude sector. The selected SSW events were of moderate and major categories and under low Kp conditions. The most important result of the current study is the long-lasting (many weeks) weakening of scintillation amplitudes at this low-latitude station, compared to their pre-SSW periods. Ionosonde-derived evening vertical plasma drifts and meridional neutral wind effects inferred from total electron content measurements are consistent with the observed weakening of GPS scintillations during these SSW events. This work provides strong evidence of SSW effects on ionospheric scintillations and the potential consequences of such SSW events on Global Navigation Satellite System-based applications
Psilocybin desynchronizes the human brain
A single dose of psilocybin, a psychedelic that acutely causes distortions of space-time perception and ego dissolution, produces rapid and persistent therapeutic effects in human clinical trial
- …