34 research outputs found

    Hypothalamic Pituitary Adenylate Cyclase-Activating Polypeptide: Impact On Energy Homeostasis And Glutamate Signaling

    Get PDF
    Pituitary adenylate cyclase-activating polypeptide (PACAP) is a member of the secretin-glucagon superfamily of peptide hormones, with homology to vasoactive intestinal polypeptide (VIP) and activity at both the VIP receptors and the PACAP specific PAC1 receptor (PAC1R). Abundantly expressed in the hypothalamus, PACAP was recently discovered to regulate energy balance when central injections produced hypophagia and increased metabolic rate. However, the neurocircuitry mediating these effects in the hypothalamus are poorly understood. To characterize how hypothalamic PACAP signaling affects energy homeostasis we microinjected PACAP site-specifically into the hypothalamic paraventricular (PVN) and ventromedial nuclei (VMN) and examined feeding behavior and metabolism. PACAP injected into both areas significantly decreased food intake, while only VMN injections increased core body temperature and spontaneous locomotor activity. In addition, all responses resulting from hypothalamic PACAP administration were blocked by pretreatment with a PAC1R antagonist. Retrograde-labeling from the PVN or VMN identified PACAP afferents originating from the brainstem, amygdala, and hypothalamus that co-expressed PACAP mRNA. These projections to the PVN and VMN represent the first description of PACAP circuits regulating energy balance. PACAP signaling is also important for modulating glutamate neurotransmission, however whether glutamatergic signaling is necessary for PACAP-induced hypophagia is unknown. Though PACAP-PAC1R signaling potentiates postsynaptic NMDA receptor activity, PACAP treatment was found to also augment the activity of the astrocytic cystine-glutamate antiporter, system xc-, in primary cortical cultures suggesting another possible means of glutamatergic modulation by PACAP. PACAP increased VMN system xc- mRNA expression in vivo, however, inhibition of system xc- activity did not attenuate PACAP-induced hypophagia. Conversely, NMDA receptor antagonism prior to PACAP administration in the VMN did block PACAP-mediated decreases in feeding, suggesting that PACAP neurotransmission in the VMN augments glutamate signaling by potentiating postsynaptic NMDA receptors. The current findings suggest that PACAP signaling, from both hypothalamic and extrahypothalamic sites, potently regulates energy balance by decreasing food intake and increasing metabolism. Furthermore, the results of our studies involving PACAP-mediated modulation of glutamate neurotransmission indicate that PACAP affects glutamatergic signaling in multiple ways, however, modulation of NMDA receptor activity in the hypothalamus may be the primary mechanism for the regulation of food intake

    Inhibition of Food Intake by PACAP in the Hypothalamic Ventromedial Nuclei is Mediated by NMDA Receptors

    Get PDF
    Central injections of pituitary adenylate cyclase-activating polypeptide (PACAP) into the ventromedial nuclei (VMN) of the hypothalamus produce hypophagia that is dependent upon the PAC1 receptor; however, the signaling downstream of this receptor in the VMN is unknown. Though PACAP signaling has many targets, this neuropeptide has been shown to influence glutamate signaling in several brain regions through mechanisms involving NMDA receptor potentiation via activation of the Src family of protein tyrosine kinases. With this in mind, we examined the Src-NMDA receptor signaling pathway as a target for PACAP signaling in the VMN that may mediate its effects on feeding behavior. Under nocturnal feeding conditions, NMDA receptor antagonism prior to PACAP administration into the VMN attenuated PACAP-mediated decreases in feeding suggesting that glutamatergic signaling via NMDA receptors is necessary for PACAP-induced hypophagia. Furthermore, PACAP administration into the VMN resulted in increased tyrosine phosphorylation of the GluN2B subunit of the NMDA receptor, and inhibition of Src kinase activity also blocked the effects of PACAP administration into the VMN on feeding behavior. These results indicate that PACAP neurotransmission in the VMN likely augments glutamate signaling by potentiating NMDA receptors activity through the tyrosine phosphorylation events mediated by the Src kinase family, and modulation of NMDA receptor activity by PACAP in the hypothalamus may be a primary mechanism for its regulation of food intake

    Serotonin mediated changes in corticotropin releasing factor mRNA expression and feeding behavior isolated to the hypothalamic paraventricular nuclei

    Get PDF
    Fenfluramine reduces hunger and promotes body weight loss by increasing central serotonin (5-HT) signaling. More recently, neuropeptides have been linked to the regulation of feeding behavior, metabolism and body weight. To examine possible interactions between 5-HT and neuropeptides in appetite control, fenfluramine (200 nmol/0.5 μl/side) was administered directly into the hypothalamic paraventricular nuclei (PVN) of male rats. Bilateral fenfluramine produced significant hypophagia and increased expression of PVN corticotropin releasing factor (CRF) mRNA and neuropeptide Y (NPY) mRNA in the arcuate nucleus within the first hour after drug administration. Fenfluramine\u27s effects on feeding behavior and mRNA expression were blocked by PVN injections of a 5-HT1–2 receptor antagonist, metergoline (15 nmol/0.5 μl/side). These data suggest that 5-HT neurons targeting hypothalamic paraventricular CRF neurons may participate in an appetite control circuit for reducing food intake

    \u3cem\u3eN\u3c/em\u3e-acetylcysteine Decreases Binge Eating in a Rodent Model

    Get PDF
    Binge-eating behavior involves rapid consumption of highly palatable foods leading to increased weight gain. Feeding in binge disorders resembles other compulsive behaviors, many of which are responsive to N-acetylcysteine (NAC), which is a cysteine prodrug often used to promote non-vesicular glutamate release by a cystine–glutamate antiporter. To examine the potential for NAC to alter a form of compulsive eating, we examined the impact of NAC on binge eating in a rodent model. Specifically, we monitored consumption of standard chow and a high-fat, high carbohydrate western diet (WD) in a rodent limited-access binge paradigm. Before each session, rats received either a systemic or intraventricular injection of NAC. Both systemic and central administration of NAC resulted in significant reductions of binge eating the WD without decreasing standard chow consumption. The reduction in WD was not attributable to general malaise as NAC did not produce condition taste aversion. These results are consistent with the clinical evidence of NAC to reduce or reverse compulsive behaviors, such as, drug addiction, skin picking and hair pulling

    Expression Patterns of BDNF with Central Anorexigenic Signaling Pathways Involving PACAP in the Hypothalamic Ventromedial Nuclei

    Get PDF
    Pituitary adenylate cyclase-activating polypeptide (PACAP) is a 38-amino acid polypeptide belonging to the secretin super family of peptides. PACAP binds to its type 1 receptor (PAC1R) with greater affinity than for the receptors for vasoactive intestinal polypeptides (VIP), VPAC1 and VPAC2. Although mRNA for PACAP and its receptor PAC1R are found throughout the central nervous system, they are abundantly expressed in the hypothalamic ventromedial nuclei (VMN). In male Sprague Dawley rats, infusions of PACAP into the VMN produce a robust decrease in food intake with concomitant increased energy expenditure, decreased body weight, and significantly elevated brain-derived neurotrophic factor (BDNF) mRNA expression in the VMN. This latter effect of PACAP on BDNF mRNA expression has been shown to occur in other brain regions. Exogenous BDNF in the VMN regulates energy homeostasis in a manner similar to that of PACAP with decreased feeding and increased metabolism. Although the physiological responses to individual PACAP and BDNF infusions in the VMN lead to decreased feeding behavior and body weight loss, the anatomical distribution of these two cell signals in the VMN has not been established. PACAP-induced changes in BDNF mRNA expression in the VMN may reveal an important interaction with PACAP signaling in the control of feeding behavior. In the present study, we have employed double-labeled fluorescent in-situ hybridization (FISH) to examine the expression patterns of PACAP, PAC1R and BDNF mRNA containing neuronal cells. In the VMN, PACAP mRNA expressing cells co-express BDNF, PAC1R, and VGLUT2. BDNF mRNA expressing cells co-express PAC1R and PACAP. Coupled with previous behavioral data demonstrating PACAP- and BDNF-induced changes in feeding behavior, the co-expression of BDNF with PACAP and PAC1R mRNA in the VMN suggest a potential functional relationship between the two signaling peptides in the regulation of energy homeostasis. The specific and integrated contributions of PACAP and BDNF in the VMN towards regulating energy homeostasis and feeding behavior still remain to be studied

    A New Obesity Model Reveals the Hypophagic Properties of PACAP Involve the Regulation of Homeostatic Feeding in the Ventromedial Hypothalamic Nucleus and Hedonic Feeding in the Nucleus Accumbens

    Get PDF
    Binge eating in humans is a complex disorder that often involves discrete, compulsive feeding sessions of highly palatable foods even in the absence of a deprivation state or hunger. Binging can be effectively modeled in rodents by providing subjects with limited access to a palatable food source (Western Diet; WD) as an adjunct to ad lib access to normal chow (Standard Chow; SC). Although this design recapitulates several fundamental characteristics observed in binge eating disorder, the binge eating observed in this paradigm is likely a product of both hedonic and homeostatic drives with the need to balance energy stores still present. To isolate these feeding drives, we have developed a novel feeding regimen that modifies the classic limited access binge model to effectively delineate and separate homeostatic feeding from motivational feeding. This is achieved by entraining male Sprague-Dawley rats to a restricted feeding schedule (two hours per day) of SC followed by a short 15 minute limited access meal of either SC or WD (Restrict Fed-Limited Access; RFLA). The RFLA paradigm allows for the examination of pituitary adenylate-cyclase activating polypeptide (PACAP) on palatable food consumption in a fully satiated subject. PACAP has previously been shown to suppress feeding behavior when injected into the hypothalamus. In the current study, PACAP injected into the ventromedial hypothalamic nuclei (VMN) suppressed the two hour homeostatic SC meal, but not the subsequent 15 minute limited access meal of WD. By contrast, PACAP bilaterally administered into the nucleus accumbens (NAc) produced the opposite effect with PACAP suppressing the consumption of WD but not SC. Thus, PACAP mediated signaling in the VMN appears to be involved in homeostatic regulation of energy stores, whereas PACAP signaling in the NAc regulates feeding driven by palatability or hedonic qualities

    Investigating the Emotional Responses of Individuals to Urban Green Space Using Twitter Data: A Critical Comparison of Three Different Methods of Sentiment Analysis

    Get PDF
    In urban research, Twitter data have the potential to provide additional information about urban citizens, their activities, mobility patterns and emotion. Extracting the sentiment present in tweets is increasingly recognised as a valuable approach to gathering information on the mood, opinion and emotional responses of individuals in a variety of contexts. This article evaluates the potential of deriving emotional responses of individuals while they experience and interact with urban green space. A corpus of over 10,000 tweets relating to 60 urban green spaces in Birmingham, United Kingdom was analysed for positivity, negativity and specific emotions, using manual, semi-automated and automated methods of sentiment analysis and the outputs of each method compared. Similar numbers of tweets were annotated as positive/neutral/negative by all three methods; however, inter-method consistency in tweet assignment between the methods was low. A comparison of all three methods on the same corpus of tweets, using character emojis as an additional quality control, identifies a number of limitations associated with each approach. The results presented have implications for urban planners in terms of the choices available to identify and analyse the sentiment present in tweets, and the importance of choosing the most appropriate method. Future attempts to develop more reliable and accurate algorithms of sentiment analysis are needed and should focus on semi-automated methods

    Behavioral Assessment of Acute Inhibition of System x\u3csub\u3ec\u3c/sub\u3e\u3csup\u3e -\u3c/sup\u3e in rats

    Get PDF
    Rationale Gaps in our understanding of glutamatergic signaling may be key obstacles in accurately modeling complex CNS diseases. System xc - is an example of a poorly understood component of glutamate homeostasis that has the potential to contribute to CNS diseases. Objectives This study aims to determine whether system xc - contributes to behaviors used to model features of CNS disease states. Methods In situ hybridization was used to map mRNA expression of xCT throughout the brain. Microdialysis in the prefrontal cortex was used to sample extracellular glutamate levels; HPLC was used to measure extracellular glutamate and tissue glutathione concentrations. Acute administration of sulfasalazine (8–16 mg/kg, IP) was used to decrease system xc - activity. Behavior was measured using attentional set shifting, elevated plus maze, open-field maze, Porsolt swim test, and social interaction paradigm. Results The expression of xCT mRNA was detected throughout the brain, with high expression in several structures including the basolateral amygdala and prefrontal cortex. Doses of sulfasalazine that produced a reduction in extracellular glutamate levels were identified and subsequently used in the behavioral experiments. Sulfasalazine impaired performance in attentional set shifting and reduced the amount of time spent in an open arm of an elevated plus maze and the center of an open-field maze without altering behavior in a Porsolt swim test, total distance moved in an open-field maze, or social interaction. Conclusions The widespread distribution of system xc - and involvement in a growing list of behaviors suggests that this form of nonvesicular glutamate release is a key component of excitatory signaling

    Reduction in Phencyclidine Induced Sensorimotor Gating Deficits in the Rat Following Increased System Xc − Activity in the Medial Prefrontal Cortex

    Get PDF
    Rationale: Aspects of schizophrenia, including deficits in sensorimotor gating, have been linked to glutamate dysfunction and/or oxidative stress in the prefrontal cortex. System xc −, a cystine–glutamate antiporter, is a poorly understood mechanism that contributes to both cellular antioxidant capacity and glutamate homeostasis. Objectives: Our goal was to determine whether increased system xc − activity within the prefrontal cortex would normalize a rodent measure of sensorimotor gating. Methods: In situ hybridization was used to map messenger RNA (mRNA) expression of xCT, the active subunit of system xc −, in the prefrontal cortex. Prepulse inhibition was used to measure sensorimotor gating; deficits in prepulse inhibition were produced using phencyclidine (0.3–3 mg/kg, sc). N-Acetylcysteine (10–100 μM) and the system xc − inhibitor (S)-4-carboxyphenylglycine (CPG, 0.5 μM) were used to increase and decrease system xc − activity, respectively. The uptake of 14C-cystine into tissue punches obtained from the prefrontal cortex was used to assay system xc − activity. Results: The expression of xCT mRNA in the prefrontal cortex was most prominent in a lateral band spanning primarily the prelimbic cortex. Although phencyclidine did not alter the uptake of 14C-cystine in prefrontal cortical tissue punches, intraprefrontal cortical infusion of N-acetylcysteine (10–100 μM) significantly reduced phencyclidine- (1.5 mg/kg, sc) induced deficits in prepulse inhibition. N-Acetylcysteine was without effect when coinfused with CPG (0.5 μM), indicating an involvement of system xc −. Conclusions: These results indicate that phencyclidine disrupts sensorimotor gating through system xc − independent mechanisms, but that increasing cystine–glutamate exchange in the prefrontal cortex is sufficient to reduce behavioral deficits produced by phencyclidine
    corecore