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ABSTRACT 
HYPOTHALAMIC PITUITARY ADENYLATE CYCLASE-ACTIVATING 

POLYPEPTIDE:  IMPACT ON ENERGY HOMEOSTASIS 
AND GLUTAMATE SIGNALING 

 
 

Jon Michael Resch 
 

Marquette University, 2014 
 
 

 Pituitary adenylate cyclase-activating polypeptide (PACAP) is a member of the 
secretin-glucagon superfamily of peptide hormones, with homology to vasoactive intestinal 
polypeptide (VIP) and activity at both the VIP receptors and the PACAP specific PAC1 
receptor (PAC1R). Abundantly expressed in the hypothalamus, PACAP was recently 
discovered to regulate energy balance when central injections produced hypophagia and 
increased metabolic rate. However, the neurocircuitry mediating these effects in the 
hypothalamus are poorly understood.   
 
 To characterize how hypothalamic PACAP signaling affects energy homeostasis we 
microinjected PACAP site-specifically into the hypothalamic paraventricular (PVN) and 
ventromedial nuclei (VMN) and examined feeding behavior and metabolism. PACAP 
injected into both areas significantly decreased food intake, while only VMN injections 
increased core body temperature and spontaneous locomotor activity.  In addition, all 
responses resulting from hypothalamic PACAP administration were blocked by pretreatment 
with a PAC1R antagonist. Retrograde-labeling from the PVN or VMN identified PACAP 
afferents originating from the brainstem, amygdala, and hypothalamus that co-expressed 
PACAP mRNA. These projections to the PVN and VMN represent the first description of 
PACAP circuits regulating energy balance. 
 
 PACAP signaling is also important for modulating glutamate neurotransmission, 
however whether glutamatergic signaling is necessary for PACAP-induced hypophagia is 
unknown. Though PACAP-PAC1R signaling potentiates postsynaptic NMDA receptor 
activity, PACAP treatment was found to also augment the activity of the astrocytic cystine-
glutamate antiporter, system xc

-, in primary cortical cultures suggesting another possible 
means of glutamatergic modulation by PACAP. PACAP increased VMN system xc

- mRNA 
expression in vivo, however, inhibition of system xc

- activity did not attenuate PACAP-
induced hypophagia. Conversely, NMDA receptor antagonism prior to PACAP 
administration in the VMN did block PACAP-mediated decreases in feeding, suggesting that 
PACAP neurotransmission in the VMN augments glutamate signaling by potentiating 
postsynaptic NMDA receptors.  
 
 The current findings suggest that PACAP signaling, from both hypothalamic and 
extrahypothalamic sites, potently regulates energy balance by decreasing food intake and 
increasing metabolism. Furthermore, the results of our studies involving PACAP-mediated 
modulation of glutamate neurotransmission indicate that PACAP affects glutamatergic 
signaling in multiple ways, however, modulation of NMDA receptor activity in the 
hypothalamus may be the primary mechanism for the regulation of food intake. 
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CHAPTER I 
 
 

INTRODUCTION 
 
 

General Introduction 
 
  
 Body weight homeostasis is achieved through the balance of energy intake and 

energy expenditure. The brain maintains this balance by integrating a myriad of hormonal 

signals and environmental stimuli followed by appropriate behavioral, endocrine, and 

autonomic nervous system responses (Shin et al. 2009). Thus, aspects of energy 

regulation such as feeding behavior are the culmination of several neural systems that 

converge to produce a behavioral output that reflects the body's current energy status (e.g. 

hunger or satiety; Figure 1.1). However, this delicate balance can be overridden by a 

number of internal and external factors resulting in imbalances, which over extended 

periods of time result in serious pathologies such as eating disorders and obesity. In 

recent decades obesity has grown as a public health concern, as the prevalence has 

reached epidemic proportions around the globe (Caballero 2007).  

 Unfortunately, increased body size and negative body image are not the lone 

drawbacks of becoming overweight or obese, as both are major risk factors for co-morbid 

diseases including diabetes, cardiovascular disease, cancer, and stroke (Khaodhiar et al. 

1999), which, not surprisingly, lead to higher healthcare costs and greater economic and 

societal burden (Lehnert et al. 2013). Therefore, continued research in the area of central 

mechanisms of body weight regulation is needed in order to counteract the startling trend 

of rising obesity rates by learning how imbalances in energy regulation can develop 

through interactions between pharmacological, environmental, and genetic mechanisms.  
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Hypothalamic regulation of feeding behavior 

 As the primary homeostatic regulator in the brain, the hypothalamus controls food 

intake through bidirectional neural connections between intra- and extrahypothalamic 

brain regions and detection of circulating hormones that signal either energy deficit or 

excess (Schwartz et al. 2000). Monitoring energy resources is a critical aspect of energy 

balance regulation as the hypothalamus sits proximal to the median eminence, a 

circumventricular organ that allows peripheral hormones to reach hypothalamic cell 

Figure 1.1. Central control of feeding behavior. Food intake is affected by multiple systems 
regulated by several brain structures throughout the brain. ARC, arcuate nuclei; BLA, basolateral 
amygdala; BNST, bed nucleus of the stria terminalis; LH, lateral hypothalamus; LPB, lateral 
parabrachial nuclei; mPFC, medial prefrontal cortex;  NAc, nucleus accumbens; NTS, nucleus 
tractus solitarius; PVN, paraventricular nuclei; SCN, suprachiasmatic nuclei; VMN, ventromedial 
nuclei; VTA, ventral tegmental area. 
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groups. By monitoring the peripheral milieu hypothalamic neurons are stimulated or 

inhibited to affect feeding behavior in a manner that restores energy balance back to a set 

point (Williams and Elmquist 2012). Though there are countless peripheral signals that 

affect food intake, leptin, a potent anorectic hormone released from adipocytes (Ingalls et 

al. 1950; Zhang et al. 1994), and ghrelin, a hormone secreted from the gut to stimulate 

appetite (Kojima et al. 1999), appear to have the broadest impact on hypothalamic 

regulation of feeding behavior (Cummings 2006; Elmquist et al. 2005; Nogueiras et al. 

2008; Vong et al. 2011; Wren et al. 2001).  

 Anatomically, the hypothalamus is comprised of several small nuclei, in very 

close proximity, to which each can be ascribed uniquely distinct functions. Of these 

nuclei, feeding behavior is generally coordinated by the mediobasal cell groups 

containing the dorsomedial nuclei (DMN), ventromedial nuclei (VMN) and arcuate 

nuclei (ARC), in addition to the lateral hypothalamus (LH) and paraventricular nuclei 

(PVN) that reside outside the mediobasal area (Figure 1.2). Within this collection of 

hypothalamic nuclei connected with feeding behavior, the VMN may be the most studied 

but also the most enigmatic. Coined the "satiety center" several decades ago (Kennedy 

1950), the VMN were once the primary focus of hypothalamic feeding research (King 

2006b). However, as experimental stimulation and lesioning techniques improved and 

allowed for more precise manipulations, the function of these nuclei became less clear 

(Gold 1973). Nevertheless, it was established that electrical stimulation of the VMN 

reduces food intake (Beltt and Keesey 1975; Ruffin and Nicolaidis 1999; Takaki et al. 

1992) and both temporary inactivation or permanent lesions generate obesity (Avrith and 

Mogenson 1978; Brobeck et al. 1943; Choi and Dallman 1999). Despite the decades of 
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accumulating evidence, whether obesity from lesions to the VMN is the result of 

hyperphagia is continued to be debated (Cox and Powley 1981).   

 

  
  
 Although it is known that VMN neurons are almost completely glutamatergic in 

nature (Fu and van den Pol 2008; Tong et al. 2007; Ziegler et al. 2002), the hypothalamus 

as a whole is typically thought to regulate feeding behavior exclusively through 

neuropeptide signaling (van den Pol 2012). Despite the rapid discoveries of 

Figure 1.2.  Hypothalamic nuclei controlling feeding behavior. The left depicts hypothalamic cell 
groups that promote feeding and the right highlights areas that promote satiety with known feeding 
neuropeptides expressed within each nuclei. Green = glutamatergic nuclei; Red = GABAergic nuclei; 
Green/Red pattern = heterogeneous cell population. ARC, arcuate; LH, lateral hypothalamus; PVN, 
paraventricular nuclei; VMN, ventromedial nuclei; opt, optic tract; 3V, third ventricle; AgRP, agout-
related peptide; AVP, vasopression; BDNF, brain-derived neurotrophic factor; CRF, corticotropin-
releasing factor; MCH, melanin-concentrating hormone; NPY, neuropeptide Y; OXY, oxytocin; 
PACAP, pituitary adenylate cyclase-activating polypeptide; POMC, pro-opiomelanocortin; TRH, 
thryrotropin-releasing hormone.  
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neuropeptides involved in homeostatic regulation, few were ever found to originate in the 

VMN until recently. These peptides were pituitary adenylate cyclase-activating 

polypeptide (PACAP) (Segal et al. 2005) and brain-derived neurotrophic factor (BDNF) 

(Xu et al. 2003), neither of which was previously linked to feeding behavior. Since their 

detection in the VMN, however, both BDNF and PACAP, which is the focus of this 

thesis and discussed at length in later sections, have been shown to be critical for VMN 

control of feeding and metabolism. For instance, VMN/DMN-specific knockout of 

BDNF produces hyperphagia and obesity (Unger et al. 2007), whereas site-specific 

injections of BDNF into the VMN produce long-lasting hypophagia (Wang et al. 2007).  

The VMN also participate in sensing peripheral hormones important for the regulation of 

feeding and metabolism. Direct injections of leptin into the VMN produce profound 

hypophagia (Jacob et al. 1997), and VMN-specific deletion of leptin receptors results in 

obesity (Dhillon et al. 2006). 

 Just ventral to the VMN are the hypothalamic arcuate nuclei (ARC), containing 

an immensely heterogeneous population of neurons that both stimulate and inhibit food 

intake. Neuropeptide Y (NPY)/agouti-related polypeptide (AgRP)-expressing neurons of 

the ARC drive feeding behavior generally under conditions when energy stores are 

depleted such as during fasting (Levine and Morley 1984; Li et al. 1998; Liu et al. 

2012a). However, acute and specific stimulation of these NPY/AgRP neurons in 

physiologically replete animals also produces robust feeding behavior suggesting these 

neurons may be part of a hard-wired motivational feeding circuit (Aponte et al. 2011; 

Atasoy et al. 2012; Betley et al. 2013; Krashes et al. 2011). By contrast, ARC neurons 

that express pro-opiomelanocortin (POMC), the precursor to the hypophagia-inducing α-
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melanocyte-stimulating hormone (α-MSH), inhibit feeding and are significantly 

regulated by circulating levels of leptin (Balthasar et al. 2004; Zhan et al. 2013). 

 The LH and PVN also have considerable roles in regulating feeding behavior 

especially given their strong afferents from the VMN and ARC. The LH functions to 

stimulate feeding behavior through extensive stimulatory outputs to the motive circuit, 

which includes interactions between LH neurons, the ventral tegmental area, and the 

nucleus accumbens (Leinninger et al. 2009; Stratford and Kelley 1999). Once considered 

a center of feeding control, in contrast to the VMN, the LH was frequently referred to as 

the "hunger center" (Anand and Brobeck 1951). While the "dual center" hypothesis (LH 

= hunger vs. VMN = satiety) has long since fallen out of favor (Elmquist et al. 1999), it 

still holds that LH lesions produce physiological wasting (Bernardis et al. 1992). Later it 

was discovered that two unique neuropeptide populations exist within the LH designated 

melanin-concentrating hormone (MCH) and orexin/hypocretin. Central administration of 

either of these neuropeptides stimulate food intake consistent with the role of the LH in 

feeding behavior. Finally, the PVN represents a hub for most intrahypothalamic feeding 

circuits with extensive innervation coming from both ARC NPY/AgRP and POMC 

neurons (Atasoy et al. 2012; Betley et al. 2013; Kim et al. 2000). Composed of a very 

heterogeneous population of neurons itself, lesions to the PVN produce a decidedly 

hyperphagic obesity (Choi and Dallman 1999; Leibowitz et al. 1981; Tokunaga et al. 

1986), perhaps due to the extensive connections with other hypothalamic nuclei, the 

brainstem, and autonomic ganglia, as well as significant control over pituitary secretions 

(Swanson and Kuypers 1980; Swanson and Sawchenko 1980; Swanson et al. 1980). 
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However, the downstream mediators of PVN regulated feeding are still being determined 

(Atasoy et al. 2012; Krashes et al. 2014).  

Hypothalamic regulation of the autonomic nervous system 

 Control over autonomic nervous system activity, via manipulation of both the 

sympathetic and parasympathetic arms, is a key means of how the hypothalamus 

regulates energy expenditure and other aspects of energy balance such as glucose 

homeostasis (Kalsbeek et al. 2010). Of particular interest in rodent models of energy 

balance is non-shivering brown adipose tissue (BAT) thermogenesis. Brown fat is 

composed of adipocytes containing an extraordinary amount of mitochondria giving it a 

brown appearance in comparison to white adipose tissue (WAT). During BAT 

thermogenesis, brown adipocytes work to expend energy as heat by reducing ATP 

production during oxidative phosphorylation in their mitochondria and instead allow for 

protons leak across mitochondrial membranes due to their expression of uncoupling 

protein 1 (UCP1) (Cannon and Nedergaard 2004). Thus, heat production through 

activation of BAT represents a principal means of regulating core body temperature and a 

significant source of total energy expenditure in the rodent that is commonly altered 

following hypothalamic manipulations (Morrison et al. 2012). Increased sympathetic 

activity to BAT drives thermogenesis and creates an upregulation in UCP1 activity and 

expression that can be a useful marker of increased BAT thermogenesis and sympathetic 

nervous system activation (Bamshad et al. 1999; Cannon and Nedergaard 2004; Lean et 

al. 1983). Though once thought to exist only to a small degree, recent evidence suggests 

that there is actually a considerable amount of BAT in adult humans (Cypess et al. 2009; 

van Marken Lichtenbelt et al. 2009; Virtanen et al. 2009), making the study of BAT 
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physiology that much more relevant to understanding human metabolism and not merely 

a useful index of rodent physiology.  

 Several hypothalamic nuclei influence BAT function, including those cell groups 

involved in feeding behavior. Furthermore, the adipostatic hormone leptin has 

considerable stimulatory effects on BAT thermogenesis, likely mediated by hypothalamic 

leptin receptors in the DMN and ARC (Kong et al. 2012; Zhang et al. 2011). Another key 

stimulatory pathway involves orexin-expressing neurons of the LH sending direct 

excitatory projections to the rostral raphe pallidus (RPa) leading to sympathetic activation 

of BAT thermogenesis (Tupone et al. 2011). Interestingly, a favored mechanism for 

unloading excess energy following food intake appears to be activation of BAT (diet-

induced thermogenesis) (Lowell and Flier 1997). 

 The hypothalamus also contains inhibitory circuits to BAT. Excitation of PVN 

neurons can result in decreased BAT thermogenesis (Madden and Morrison 2009), a 

circuit that is inhibited by ARC rat insulin promoter (RIP) neurons that do not co-express 

NPY, AgRP, or POMC (Kong et al. 2012). However, the PVN may also have other 

mechanisms influencing BAT activity depending on which cell subpopulation is 

stimulated, as glutamate injections into the PVN are also reported to increase BAT 

thermogenesis (Amir 1990b). ARC NPY/AgRP neurons may also decrease BAT 

thermogenesis, as specific stimulation of these neurons significantly reduces energy 

expenditure (Krashes et al. 2011), likely due, in part, to reduced BAT activity (personal 

communication).   

 There are many questions surrounding the role of the VMN in regulation of BAT 

thermogenesis, primarily stemming from polysynaptic tract tracing studies using 
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pseudorabies virus resulting in the labeling of all the hypothalamic nuclei discussed 

above except the VMN, even after long incubation periods (Bamshad et al. 1999; 

Oldfield et al. 2002). This is a surprising result considering the initial studies involving 

hypothalamic regulation of BAT demonstrated that the VMN have a stimulatory effect 

(Amir 1990a; Perkins et al. 1981; Yoshimatsu et al. 1993). Unfortunately, due to the 

close proximity of the VMN to the DMN and ARC and lack of retrograde tracing from 

BAT, these pioneering studies, and others like them (Wang et al. 2010), have been 

dismissed due to lack of confidence in injection site accuracy (Morrison et al. 2012). 

Recent transgenic approaches have been able to provide a better indication of whether the 

VMN are involved in BAT regulation. Postnatal elimination of the VMN-specific 

transcription factor steroidogenic factor 1 (SF-1), allowing for normal development of the 

VMN, causes a deficit in diet-induced thermogenesis when these animals are challenged 

with a high fat diet that is also coupled with decreased UCP1 expression (Kim et al. 

2011). Still, evidence from anatomical tracing studies may be needed for a universal 

acceptance of VMN-induced BAT thermogenesis. 

  In addition to temperature regulation, there are many other aspects of energy 

metabolism that the hypothalamus governs through regulation of hypothalamic-pituitary 

axes such as glucocorticoid and thyroid hormone production and through other targets of 

the autonomic nervous system including the adrenal gland, liver, pancreas, and white 

adipose tissue to name a few. Many of these hypothalamic processes revolve closely 

around glucose homeostasis, especially those involving adrenal, hepatic, and pancreatic 

outputs (Hamelink et al. 2002; Kreier et al. 2006). The capability of this tight 

hypothalamic control over glycemic levels stems from various nuclei equipped with 
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glucose-sensing neurons that can either be excited or inhibited by changes in circulating 

levels of glucose (Karnani and Burdakov 2011). While alterations in glucose levels do 

not appear to have a significant impact on food intake (Dunn-Meynell et al. 2009), they 

do lead to changes in autonomic activity to maintain euglycemia (Buijs et al. 2001). As 

such, the VMN are thought to be necessary for the counterregulatory response to 

hypoglycemia by stimulating peripheral catecholamine and glucagon release (Borg et al. 

1997; Borg et al. 1994; Borg et al. 1995; Fioramonti et al. 2010; Levin et al. 2008; Tong 

et al. 2007), and have been proposed to excite preautonomic neurons of the PVN to 

stimulate hepatic glucose production (Yi et al. 2010).   

Pituitary adenylate cyclase-activating polypeptide (PACAP) 

 Isolated from ovine hypothalamus, PACAP was first described to stimulate 

adenylate cyclase activity in pituitary cells (Miyata et al. 1989). Upon characterization it 

was discovered that PACAP belonged to the evolutionarily well-conserved secretin-

glucagon superfamily of peptide hormones, which also includes gastric inhibitory 

peptide, growth hormone-releasing factor, and vasoactive intestinal polypeptide (VIP), 

suggesting this peptide is essential to normal physiology (Sherwood et al. 2000). The 

PACAP gene encodes a precursor peptide that after posttranslational processing yields 

the biologically inactive (in mammals) PACAP-related peptide (PRP) and PACAP of 

either 27 or 38 amino acids (aa) in length (Ogi et al. 1990; Okazaki et al. 1992). Although 

PACAP27 and PACAP38 undergo different posttranslational processes both peptides are 

functionally very similar, with PACAP38 the decidedly predominant form in the CNS 

(Ghatei et al. 1993; Hannibal et al. 1995a). Abundant CNS expression is found in the 

hypothalamus, limbic system, and brainstem (Ghatei et al. 1993; Hannibal 2002; 
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Hannibal et al. 1995a; Piggins et al. 1996), where PACAP signaling is functionally linked 

to a wide array of systems including learning, memory, circadian rhythms, stress, mating, 

cell survival, autonomic nervous system activity, and energy homeostasis (Agarwal et al. 

2005; Ago et al. 2013; Apostolakis et al. 2004; Arimura et al. 1994; Hammack et al. 

2010; Hannibal et al. 2000; Harrington et al. 1999; Hawke et al. 2009; Otto et al. 2001; 

Seaborn et al. 2011; Tanida et al. 2010).  

 As its name implies, PACAP also has significant effects on endocrine function 

through stimulation of several pituitary hormones (Rawlings and Hezareh 1996), in 

addition to expression in the periphery found in the adrenal gland, gonads, pancreas, and 

peripheral nervous system (Vaudry et al. 2009). It is important to note that the extent to 

which bidirectional PACAP signaling occurs between central and peripheral 

compartments is very low, as peripheral PACAP is similar to other peptide hormones that 

exhibit limited distribution and rapid blood clearance, even though both saturable and 

nonsaturable mechanisms exist for PACAP transport across the blood-brain barrier 

(Banks et al. 1993; Bourgault et al. 2011). Furthermore, an extensive efflux component, 

peptide transport system-6 (PTS-6), in the blood-brain barrier represents a considerable 

obstacle to PACAP influx from the periphery (Dogrukol-Ak et al. 2009).  

 The PACAP receptors are all members of the B1 subclass of G protein-coupled 

receptors (GPCR), and include the PACAP type I receptor (PAC1R) and the VIP 

receptors, VPAC1R and VPAC2R, due to approximately 68% homology between 

PACAP and VIP (Dickson and Finlayson 2009). Among the various receptor types, 

PAC1R has a much greater affinity for both PACAP27 and PACAP38 than for VIP, 

while VPAC1R and VPAC2R bind PACAP and VIP equally (Table 1.1) (Gottschall et al. 
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1990; Lam et al. 1990). Because of this overlap in receptor activity between PACAP and 

VIP several pharmacological agents have been discovered or derived in order to isolate 

one of the three receptors specifically and determine its function, however, all of the 

selective ligands thus far are peptidergic in nature and usually display some activity at 

one of the other PACAP receptors (Table 1.1) (Dickson et al. 2006; Dickson and 

Finlayson 2009; Fishbein et al. 1994; Gourlet et al. 1995; Lerner et al. 2007; Robberecht 

et al. 1992; Summers et al. 2003; Vaudry et al. 2009). 

 
Table 1.1. PACAP receptor binding affinities and selective ligands 

Receptor 

 
Dissociation 

Constant 
(Kd) 

 

Agonists Antagonists 

PAC1R PACAP ≈ 0.5 nM 
VIP > 500 nM Maxadilan 

 
PACAP6-38 

(VPAC2R activity) 
 

M65 
 

VPAC1R PACAP ≈ VIP ≈ 1 nM [K15,R16,L27]VIP(1-7)/ GRF(8-27) 
 

PG 97-269 
 

VPAC2R PACAP ≈ VIP ≈ 1 nM 
BAY 55-9857 

(VPAC1R activity) 

 
PG 99-465 

(VPAC1R/PAC1R activity) 
 

 
(Dickson and Finlayson 2009; Vaudry et al. 2009) 
  

 As with the rest of the B1 subclass of GPCRs, PACAP receptor signaling is 

coupled to Gαs and stimulation of adenylate cyclase activity, however, many other signal 

transduction pathways are activated by either VPAC or PAC1 receptors (Dickson and 

Finlayson 2009). Consequently, PACAP receptors are also capable of coupling to other G 

proteins such as Gαq, and can result in a diverse array of intracellular signals outside of 

cAMP production including activation of phospholipase C, protein kinase C,  
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phospholipase D, and/or intracellular calcium release (Figure 1.3) (Dickson and 

Finlayson 2009). This broad impact mediated by PACAP receptors is attributed to the 

existence of multiple variants, especially in the PAC1R, as it is described as one of the 

most alternatively spliced GPCRs known (Dautzenberg et al. 1999; Kilpatrick et al. 

1999). Splice variants occur throughout the PAC1 receptor at the N-terminus (Daniel et 

al. 2001; Dautzenberg et al. 1999; Lutz et al. 2006; Pantaloni et al. 1996), transmembrane 

domains (Chatterjee et al. 1996), and third intracellular loop (Braas and May 1999; 

Journot et al. 1995; Spengler et al. 1993), however, the majority of PAC1R variants arise 

from inclusion or removal of the third intracellular loop cassettes, designated hip (28 aa), 

hop1 (28 aa), and hop2 (27 aa). No matter the location, all of the approximately 15 

PAC1R isoforms have functional consequences resulting in changes in potency of 

PACAP/VIP and/or second messenger activation (Dickson and Finlayson 2009). The 

heavy alternative splicing that results in variations of pharmacological profile and 

 
 
Figure 1.3. PACAP/VIP receptor signaling pathways. G protein-coupling to Gαs, Gαq, or Gαi/o allow 
for diverse intracellular signal transduction in the cell by PACAP receptors. Figure adapted from 
Dickson and Finlayson, 2009.  
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receptor signaling demonstrate the complexity of the PACAP/VIP neuropeptide system, 

and illustrates the need for development of selective ligands for PAC1 and VPAC 

receptors (Bourgault et al. 2009), as they are often expressed in the same tissue (Nguyen 

et al. 1993; Robberecht et al. 1991; Tatsuno et al. 1990).  

Regulation of feeding behavior by central PACAP signaling 

 The first observations of PACAP-mediated regulation of food intake were 

observed soon after its discovery (Miyata et al. 1989), when intracerebroventricular (icv) 

injections of PACAP were found to significantly reduce food intake in food-deprived 

mice (Morley et al. 1992). Later, icv PACAP administration was also observed to 

decrease feeding behavior in goldfish, chicks, and rats (Matsuda et al. 2005; Mizuno et al. 

1998; Tachibana et al. 2003). Pretreatment with PACAP6-38, a truncated form of 

PACAP that antagonizes the PAC1 receptor (Robberecht et al. 1992), abolishes the 

hypophagic response to icv PACAP injections indicating that control of food intake can 

be mediated by PAC1 receptors (Hawke et al. 2009; Mounien et al. 2009). Considering 

these results, it is surprising that PACAP, PAC1R, and VPAC2R knockout (KO) mice are 

lean (Adams et al. 2008; Asnicar et al. 2002; Jamen et al. 2000; Nakata et al. 2004; 

Tomimoto et al. 2008). Furthermore, PACAP KO mice eat significantly less food than 

their wild-type littermates when normalized for body weight, and exhibit reduced NPY 

mRNA expression (Nakata et al. 2004). The lean phenotype of PACAP related KO mice 

conflicts with behavioral data collected from central pharmacological experiments 

suggesting that peripheral PACAP signaling also contributes to feeding behavior, and 

possibly that multiple PACAP-expressing circuits in the brain drive either hunger or 

satiety. Moreover, constitutive deletion of either PACAP or PAC1R results in early 
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lethality suggesting an essential role for this neuropeptide (Gray et al. 2001; Otto et al. 

2004). To date, limited technology allowing for cell-type specific manipulation has 

hindered the isolation of specific PACAP circuits and their contributions to feeding 

behavior (until recently (Krashes et al. 2014)), leaving pharmacology and expression 

analyses as the primary avenues of investigation.  

Although central PACAP neurocircuitry is largely unknown, the decreased 

feeding produced by exogenous PACAP injections has been attributed mainly to 

signaling within the hypothalamus. This is due, in part, to reports of PACAP-mediated 

attenuation of NPY-induced feeding (Chance et al. 1995; Morley et al. 1992) and 

extensive expression of PAC1 receptors in multiple hypothalamic nuclei (Hashimoto et 

al. 1996; Resch et al. 2011). In further support, there is a distinct abundance of PACAP 

protein expression in the hypothalamus with greater concentrations than in both the 

amygdala and extended amygdala and with protein concentrations of approximately 25 

times that found in the cerebral cortex (Hannibal et al. 1995a). In situ hybridization and 

immunohistochemistry techniques have specifically identified major hypothalamic cell 

groups expressing PACAP to include the PVN (Hannibal et al. 1995b; Nomura et al. 

2000), VMN, and some subnuclei of the mammillary bodies (Hannibal 2002). In 

addition, immunohistochemical analysis of PACAP immunoreactivity demonstrates 

virtually every hypothalamic area receives intense labeling of PACAP nerve fibers 

(Hannibal 2002; Piggins et al. 1996).  

Importantly, hypothalamic PACAP mRNA expression is responsive to energy 

signaling. Mice maintained on a high energy diet for 8 weeks show increased levels of 

circulating leptin associated with increased PACAP mRNA expression in the VMN, and 
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conversely 48 hours of fasting causes significantly decreased levels (Hawke et al. 2009). 

Of note, leptin treatment in fasted animals normalizes VMN PACAP mRNA expression, 

and furthermore, leptin deficiency or deletion of leptin receptors from the VMN results in 

reduced PACAP mRNA expression. The relationship between leptin and PACAP is also 

demonstrated by pretreatment with the PAC1R antagonist PACAP6-38 eliminating 

leptin-mediated hypophagia (Hawke et al. 2009) and the attenuated hypophagia observed 

following icv leptin administration in PACAP KO mice (Tanida et al. 2013). These data 

indicate that PACAP neurotransmission, likely involving the VMN, may be a mediator of 

leptin-mediated inhibition of food intake. 

Like PACAP, hypothalamic pro-opiomelanocortin (POMC) mRNA expression is 

also reduced following a 48 hour fast in mice. (Mounien et al. 2009). POMC is the 

precursor to α-melanocyte-stimulating hormone (α-MSH), a potent neuropeptide signal 

that has a significant role in body weight regulation through stimulating central 

melanocortin receptors (MC3/4R) (Zhan et al. 2013). Notably, PACAP also dose-

dependently increases POMC mRNA in ARC hypothalamic slices (Mounien et al. 

2006b), indicating a possible relationship between the two neuropeptide signals. 

Remarkably, both PACAP6-38 and the melanocortin receptor antagonist SHU9119 block 

PACAP-induced decreases in feeding after icv injection, and in situ hybridization 

decisively shows increased c-fos mRNA expression in ARC POMC neurons one hour 

following PACAP icv injections, perhaps localizing PACAP-induced hypophagia to the 

ARC (Mounien et al. 2009). Given the relationships between PACAP and both leptin and 

POMC in the hypothalamus, it is conceivable that leptin stimulates excitatory VMN 
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PACAP neurons projecting to ARC POMC neurons, leading to decreased food intake 

(Balthasar et al. 2004; Dhillon et al. 2006; Hawke et al. 2009; Mounien et al. 2009). 

Although the hypothalamus appears to be the primary target for regulation of food 

intake by PACAP signaling, very few have attempted to ascertain the intrahypothalamic 

PACAP circuitry or site-specific contributions that regulate feeding behavior. The 

hypothalamus possesses an abundance of PAC1R mRNA in many of its nuclei compared 

to a more restricted expression pattern of VPAC2R mRNA (Hashimoto et al. 1996; 

Mounien et al. 2006a; Resch et al. 2011; Usdin et al. 1994; Yi et al. 2010), suggesting 

that hypothalamic control of feeding utilizes PACAP-PAC1R signaling. Hypothalamic 

injections of PACAP into the perifornical area of the lateral hypothalamus (PFH) produce 

potent hypophagia, exemplified by PACAP-mediated inhibition of NPY-induced feeding 

in the PFH (Chance et al. 1995). Furthermore, animals with restricted access to food 

continue to respond with decreased food intake following PACAP injections into the PFH 

demonstrating that PACAP-induced decreases in feeding may not be limited strictly to 

inhibition of NPY-induced feeding (Chance et al. 1995). The alterations in PFH neuron 

activity leading to changes in feeding behavior driven by NPY and PACAP are likely a 

product of cAMP second messenger signaling cascades, as PACAP reduces cAMP 

response element (CRE) binding in nuclear extracts of PFH tissue, while food deprivation 

and NPY significantly increase CRE binding (Sheriff et al. 1997). Of note, PACAP 

signaling in the PFH may also regulate fluid intake, although PFH PACAP administration 

has been reported to produce both adipsogenic (Chance et al. 1995) and dipsogenic (Puig 

de Parada et al. 1995) effects. These discrepancies may result from differences in the 

concentration of PACAP injections delivered into the PFH or an apparent differential 
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response of fluid intake to rostral and caudal injection sites of the PFH to PACAP. While 

the circuitry responsible for regulation of ingestive behavior in the PFH is still undefined, 

it is clear that PACAP has a diverse role in regulating PFH function. 

 Another pair of hypothalamic nuclei that utilize PACAP to regulate feeding 

behavior are the paraventricular nuclei (PVN). The PVN express a large amount of 

PAC1R mRNA, as well as an abundance of PACAP-like immunoreactivity in perikarya 

and terminals (Das et al. 2007; Hannibal et al. 1995b; Hashimoto et al. 1996; Legradi et 

al. 1998). Furthermore, PACAP synapses terminate specifically onto PVN corticotropin-

releasing factor (CRF) neurons, and icv injection of PACAP increases PVN CRF mRNA 

(Grinevich et al. 1997; Legradi et al. 1998). Importantly, PACAP is hypothesized to 

excite CRF neurons in the PVN, resulting in stimulation of the hypothalamic-pituitary-

adrenal (HPA) axis, which supports the results that icv PACAP injections increase blood 

corticosterone levels (Dore et al. 2013; Yi et al. 2010). Stress can have a significant 

impact on feeding and body weight and given the apparent association between PACAP 

signaling and CRF neurons of the PVN, site-specific PACAP injections into PVN may 

produce significant alterations in a number of physiological systems including feeding 

behavior. Behavioral analysis following microinfusion of PACAP into the PVN shows 

increased face washing and body grooming and decreased rearing and locomotor activity 

irrespective of whether animals received mild restraint stress (Norrholm et al. 2005). 

Unfortunately, food intake following PACAP injections into the PVN was not reported 

leaving a significant gap in knowledge regarding feeding, stress, and PACAP signaling. 

However, icv pretreatment with a CRF antagonist prior to PACAP administration does 
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not block hypophagia and reductions in body weight induced by PACAP (Dore et al. 

2013), perhaps separating the hypophagic and stress responses to central PACAP.  

Autonomic regulation by central PACAP signaling 

 Multiple sites within the hypothalamus not only control energy intake but also 

energy expenditure. This is also true of PACAP signaling as central injections dose-

dependently reduce feeding under both normal and food-deprived conditions and increase 

metabolism through regulation of the autonomic nervous system, causing increases in 

core body temperature (Hawke et al. 2009; Masuo et al. 1995; Pataki et al. 2000), 

locomotor activity (Masuo et al. 1995), and oxygen consumption (Hawke et al. 2009). 

The impact of increased energy expenditure driven by these effects on body weight are 

clearly demonstrated in pair-feeding experiments where animals receiving icv PACAP 

lose significantly more body weight in a 24 hour period than both controls and animals 

restricted to the amount of food eaten by PACAP treated animals (Hawke et al. 2009). 

Furthermore, both PACAP and PAC1R KO mice have notable metabolic deficiencies. 

The first reports of PACAP/PAC1R KO mice described lean undernourished pups with a 

high incidence of lethality accompanied by elevated circulating levels of ketones, 

triglycerides, cholesterol, and corticosterone, in addition to very low liver glycogen (Gray 

et al. 2001; Otto et al. 2004). Moreover, PACAP/PAC1R null mice show signs of 

pulmonary hypertension, enlarged hearts, intracellular lipid accumulation in cardiac cells, 

and increased levels of serum free fatty acids consistent with the possibility of 

cardiovascular problems contributing to early lethality (Gray et al. 2001; Otto et al. 

2004). 
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Interestingly, survival of PACAP null mice is greatly improved if the animals are 

housed at an elevated ambient temperature (24° C vs. 21° C) suggesting a crucial role for 

PACAP in thermoregulation (Gray et al. 2002). Additionally, PACAP knockout mice 

housed at 24° C challenged with a 21° C climate lost their body temperature significantly 

faster than wild-type littermates, yet brown adipose tissue (BAT) in these animals 

appeared to be fully capable of non-shivering thermogenesis (Gray et al. 2002). 

Therefore, lack of temperature regulation in these mice was attributed to decreased 

stimulation of brown fat by norepinephrine from sympathetic nerves.  

Given pharmacological and genetic data signifying a crucial role for PACAP 

signaling in thermoregulation, the catabolic response to icv injections of PACAP is likely 

due to modulation of autonomic nerve activity, as energy expenditure driven by increased 

core body temperature is often mediated by sympathetic activation of BAT 

thermogenesis in rodents. Indeed, third ventricle injection of PACAP increases mean 

arterial pressure and heart rate, as well as altering a host of autonomic nerve pathways. 

Renal, adrenal, celiac, lumbar, liver, and interscapular brown adipose sympathetic nerve 

activities all significantly increase following PACAP injections, while parasympathetic 

gastric vagal and celiac vagal nerve activities decrease (Tanida et al. 2011a; Tanida et al. 

2010). As observed with the regulation of feeding behavior, PACAP signaling may work 

synergistically with leptin and melanocortin signaling to regulate metabolism. Central 

pretreatment with the PAC1R antagonist PACAP6-38 icv blocks stimulation of white 

adipose tissue sympathetic nerve activity and hyperthermia induced by leptin injections, 

suggesting that central actions of leptin may include stimulating PACAP release, perhaps 

from the VMN (Hawke et al. 2009; Tanida et al. 2013). In addition to the interaction with 
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leptin, the melanocortin receptor antagonist SHU9119 inhibits some of the effects of 

PACAP on autonomic nerve activity, including effectively blocking PACAP-induced 

modulation of the parasympathetic gastric vagal nerve and sympathetic nerves 

innervating the liver and brown adipose tissue (Tanida et al. 2011a). Meanwhile, 

SHU9119 does not inhibit PACAP’s effect on mean arterial pressure or heart rate, 

suggesting that the melanocortin system may only participate in the digestive and 

thermogenic processes regulated by PACAP, but not other physiological systems 

stimulated by central PACAP injection (Tanida et al. 2011a).   

PACAP regulation of glucose homeostasis  

 PACAP plays a diverse role in glucose homeostasis. Impaired glucose tolerance 

or insulin hypersensitivity following glucose and insulin tolerance tests are observed in 

PACAP, PAC1R, and VPAC2R knockout mice (Adams et al. 2008; Asnicar et al. 2002; 

Jamen et al. 2000; Tomimoto et al. 2008). PACAP knockouts also display low basal 

levels of insulin (Adams et al. 2008; Tomimoto et al. 2008) and a hypersensitivity to 

insulin-induced lethality (Hamelink et al. 2002), while PAC1R KO mice exhibit 

compromised insulin secretion and glucagon response to insulin-induced hypoglycemia 

(Jamen et al. 2000; Persson and Ahren 2002). These abnormalities of insulin secretion 

and signaling suggest pancreatic dysfunction, however PACAP knockout mice also show 

insufficient catecholamine production indicated by low adrenal epinephrine levels and 

tyrosine hydroxylase activity following insulin challenge (Hamelink et al. 2002), and a 

blunted glucose response to stressful stimuli (Tanida et al. 2010), all of which point to 

orchestration of glucose regulation through PACAP signaling in other organs such as the 

adrenal gland. Given the rich expression of PACAP both centrally and peripherally it is 
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difficult to pinpoint a single target for the abnormal glucose homeostasis in PACAP 

knockout animals, especially since PACAP expression exists in a number of peripheral 

organs such as the pancreas (Filipsson et al. 1998; Portela-Gomes et al. 2003) and adrenal 

(Ghatei et al. 1993; Kantor et al. 2002; Moller and Sundler 1996).   

 Central PACAP regulation of glucose does impact peripheral blood glucose 

independent of peripheral actions via modulation of the autonomic nervous system. 

Plasma glucose concentrations rise rapidly following central PACAP injections, in 

addition to plasma glucagon and corticosterone levels. Interestingly, glucose production 

stimulated by central PACAP occurs through endogenous glucose production largely due 

to liver glycogenolysis, and to a smaller extent gluconeogenesis (Mounien et al. 2009; Yi 

et al. 2010). In support of liver involvement, central PACAP administration increases 

phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) 

mRNA, and drastically decreases glycogen content in the liver. Furthermore, hepatic 

sympathetic, but not hepatic parasympathetic denervation abolishes the effects of central 

PACAP injection on plasma glucose (Yi et al. 2010).  

 Using retrograde tracing from the intermediolateral (IML) column of the thoracic 

spinal cord, where liver projecting sympathetic neurons reside, in combination with Fos 

immunohistochemistry, neurons in the paraventricular nuclei (PVN) of the hypothalamus 

were co-labeled with tracer and Fos immunoreactivity following central PACAP 

administration, suggesting that PACAP activates preautonomic PVN neurons that 

stimulate hepatic sympathetic nerve activity and in turn glucose production (Yi et al. 

2010). These results are further supported by the increased glucose production that occurs 

following direct microinjection of PACAP into the PVN (Resch et al. 2013; Yi et al. 
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2010). Interestingly, the effects of centrally administered PACAP on glucose would 

appear to be distinct from that of feeding and metabolism because it is not blocked by 

either PAC1R or melanocortin receptor antagonists. Instead the glycemic response 

appears to be mediated by the vasoactive intestinal polypeptide 2 receptor (VPAC2R), as 

VPAC2 receptor antagonism inhibits plasma glucose production induced by central 

PACAP (Yi et al. 2010).  

Glutamate neurotransmission and its modulation by PACAP 

 Glutamate plays a significant role in several pathways of cellular metabolism 

including energy production and protein synthesis and degradation (Kelly and Stanley 

2001), however, it is also the primary excitatory neurotransmitter in the brain. 

Elimination of synaptic glutamate release, through targeted gene knockout strategies, is 

incompatible with life demonstrating that glutamate neurotransmission is absolutely 

essential to CNS function and survival (Moechars et al. 2006; Wojcik et al. 2004). 

Glutamate signaling occurs through several ionotropic (Lodge 2009) or metabotropic 

(Niswender and Conn 2010) receptor subtypes that are expressed in various locations in 

and around the synapse, leading to complex regulation of excitatory communication 

(Figure 1.4). Adding to this complicated system are neuromodulatory transmitters that 

can affect glutamate signaling by altering presynaptic release (Pancani et al. 2014), 

postsynaptic receptor activity (Kempadoo et al. 2013), or even reuptake (Brown 2000). 

The neuropeptide PACAP, which is co-expressed with some populations of glutamate 

neurons (Fig. 5.1) (Engelund et al. 2010; Fahrenkrug and Hannibal 2004; Hannibal et al. 

2000), is positioned to be an essential modulator as it appears to have multifaceted effects 
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on glutamate neurotransmission through signaling both on neurons (Macdonald et al. 

2005) and astrocytes (Figiel and Engele 2000). 

 Activation of ionotropic glutamate receptors provide fast-acting depolarizing 

current at the postsynaptic neuron following synaptic glutamate release, with each 

receptor type capable of different subunit compositions that can significantly modify 

receptor kinetics (Dingledine et al. 1999). The low affinity ionotropic glutamate receptors 

α-amino-3-hydroxy-5-methyl-4-isoxazolproprianic acid (AMPA) and kainate are 

trafficked near to synaptic release sites where concentrations of glutamate are highest 

upon vesicular release (Franks et al. 2002; Raghavachari and Lisman 2004; Zheng et al. 

2008). N-methyl-D-aspartate (NMDA) receptors are high affinity ionotropic glutamate 

receptors, however, they also require the presence of co-agonists glycine or D-serine to 

become activated (Johnson and Ascher 1987; Schell et al. 1995). Furthermore, within the 

ion channel of NMDA receptors exists a voltage-dependent magnesium block that is 

removed by depolarization, usually done so by AMPA/kainate activation, which exhibit 

rapid gating (Nowak et al. 1984). Contributing to glutamate receptor activation, PACAP 

signaling through both VPAC and PAC1 receptors appear to potentiate activity of 

ionotropic glutamate receptors, specifically AMPA (Cho et al. 2012; Costa et al. 2009) 

and NMDA receptors (Harrington et al. 1999; Macdonald et al. 2005; Wu and Dun 1997; 

Yaka et al. 2003), however presynaptic modulation of glutamate release may also be 

involved (Otto et al. 1999). Likewise, depression of AMPA and NMDA receptor currents 

have been reported under conditions of excessive PACAP concentrations in the 

hippocampus (Costa et al. 2009; Macdonald et al. 2005). 
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 In addition to ionotropic forms, multiple subtypes of high affinity metabotropic 

glutamate receptors (mGluR) exist. The mGluRs are divided into three categories based 

on sequence homology, G protein-coupling, and ligand selectivity (Niswender and Conn 

2010). Group I mGluRs (mGluR1,5) are generally postsynaptic and excitatory through 

coupling to Gαq/11 and activation of phospholipase C (Hermans and Challiss 2001). By 

contrast, group II (mGluR2-3) and group III (mGluR4,6-8) receptors are often located 

presynaptically (especially group III) and inhibit neurotransmitter release (Niswender and 

Conn 2010). Considering both mGluRs and PACAP signaling have modulatory roles it is 

not surprising that little evidence exists for interactions between them, however, PACAP 

signaling in the suprachiasmatic nuclei may reduce the calcium induction caused by 

group I mGluR activation (Kopp et al. 2001). 

Glial glutamate regulation and the potential role for PACAP  

 Glutamate homeostasis may be more dependent on the function of glia than any 

other cell type in the CNS. This is supported by the importance of sodium-dependent 

glial glutamate transporters (GLT-1 and GLAST) to remove vesicular glutamate release 

from the synapse in order to prevent spillover into other synaptic compartments (Figure 

1.4) (Asztely et al. 1997; Diamond and Jahr 2000) and to signal for glycolysis activation 

to replenish energy resources following increased neuronal activity (Pellerin and 

Magistretti 1994). However, a poorly studied aspect of glutamate neurotransmission is 

astrocytic glutamate release (Baker et al. 2002; Parpura and Haydon 2000; Ye et al. 

2003), which may be capable of coordinating neuronal activity on a network level 

(Bushong et al. 2002; Ogata and Kosaka 2002). In particular, the astrocytic cystine-

glutamate antiporter, system xc
-, which exchanges one extracellular molecule of cystine  
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for one intracellular molecule of glutamate (Bannai and Kitamura 1980) has been 

implicated in maintaining the extrasynaptic pool of glutamate (Baker et al. 2002). 

Dysregulation of system xc
- activity results in altered concentrations of extrasynaptic 

glutamate, altered neurotransmitter release, and upregulation of postsynaptic glutamate 

receptor clustering, which can lead to pathology (Augustin et al. 2007; Baker et al. 2008; 

Baker et al. 2003; De Bundel et al. 2011; Featherstone et al. 2002; Knackstedt et al. 2009; 

Kupchik et al. 2012; Moran et al. 2005). Moreover, excessive extrasynaptic glutamate 

concentrations, perhaps through system xc
-, may also contribute to excitotoxic neuronal 

injury or death suggesting the regulation of this antiporter may be tightly regulated by the 

 
Figure 1.4. Schematic representation of a typical glutamatergic synapse. Glutamate (Glu) signaling 
occurs both within the synapse and extrasynaptically to regulate neuronal excitability, much of 
which is regulated by astrocytes through synaptic glutamate uptake (E; EAATs), glutamate release 
(via cystine (c-c)-glutamate antiporter), and the glutamate-glutamine (Glt) cycle responsible for 
replenishing glutamate availability in neurons that have only few glutamate reuptake transporters. 
M, metabotropic glutamate receptor; A, AMPA receptor; N, NMDA receptor. Figure adapted from 
Bridges et al.  2012. 



27 

synaptic environment (Buckingham et al. 2011; de Groot and Sontheimer 2011; Fogal et 

al. 2007; Jackman et al. 2010; Liu et al. 2014; Sontheimer 2011).  

 Importantly, PACAP also displays significant interactions with glia, especially 

astrocytes, with all three PACAP/VIP receptors showing astrocytic expression (Ashur-

Fabian et al. 1997; Grimaldi and Cavallaro 1999; Grimaldi and Cavallaro 2000; Jaworski 

2000; Suzuki et al. 2003; Tatsuno et al. 1991; Tatsuno et al. 1990; Tatsuno et al. 1996a). 

Remarkably, PACAP signaling on astrocytes involves many of the glutamatergic systems 

in place to regulate cell excitability and energy metabolism. For example, PACAP 

treatment of astrocytes appears to upregulate expression and function of the glial 

glutamate transporters GLT-1 and GLAST through activation of both PKA and PKC-

dependent pathways (Figiel and Engele 2000). PACAP has also been shown to play a 

role in glial glycogen metabolism (Cardinaux and Magistretti 1996; Magistretti et al. 

1998), and may mediate its neurotrophic role through protecting against oxidative stress 

and excitotoxicity by signaling on astrocytes (Brown 2000; Masmoudi-Kouki et al. 2011; 

Morio et al. 1996; Stumm et al. 2007; Zusev and Gozes 2004).  

Current Studies  

 This thesis continues to build upon the foundation of knowledge involving 

hypothalamic regulation of energy balance by investigating the role of PACAP signaling 

on feeding behavior and metabolism. Characterizing specific components of PACAP 

neurocircuitry and receptor signaling as they pertain to hypothalamic energy regulation 

could make great strides toward eventual therapeutic tools to treat obesity and diabetes. 

While the research field is aware of the potent effects of PACAP on feeding and 

metabolism, much of the data is marred by behavioral pharmacology based on non-
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specific central injections of the peptide or global gene knockout strategies. The current 

work begins to answer questions about the hypophagic and hypermetabolic effects 

observed following icv injections of PACAP by carefully restricting our injections to 

distinct hypothalamic nuclei.  

 Remarkably at the onset of this dissertation project, the PACAP neurocircuitry 

mediating its regulation of body weight was only speculative. Consequently, we set to 1) 

identify the site(s) of action responsible for the hypophagic response to PACAP in the 

hypothalamus, 2) determine if these "satiety centers" were also involved in other aspects 

of energy homeostasis such as controlling energy expenditure and glucose homeostasis, 

3) delineate the sources of endogenous PACAP signaling projecting into these nuclei, and 

4) investigate how PACAP modulates glutamatergic neurotransmission to produce 

behavioral and physiological effects. Through site-specific behavioral pharmacological 

analysis, retrograde tract tracing, and examination of the interaction between glutamate 

and PACAP both in vitro and in vivo, the resulting data from these experiments not only 

strongly suggests a critical role for PACAP in the regulation of feeding behavior and 

metabolism but also towards the modulation of glutamate neurotransmission.   

 
 

 
 
 
 
 
 
 
 
 
 
 
 



29 

CHAPTER II 
 
 

REGULATION OF FOOD INTAKE BY PACAP SIGNALING IN THE 
VENTROMEDIAL NUCLEI OF THE HYPOTHALAMUS 

 
 

Introduction 
 
 
 The ventromedial nuclei of the hypothalamus (VMN) are important regulators of 

feeding behavior. Temporary inhibition, with procaine (Berthoud and Jeanrenaud 1979; 

Yadav et al. 2009) and colchicine (Avrith and Mogenson 1978; Choi and Dallman 1999), 

or permanent lesion of the VMN result in hyperphagia (Brobeck et al. 1943), while 

electrical stimulation produces reduced feeding in rats (Beltt and Keesey 1975; Ruffin 

and Nicolaidis 1999; Stenger et al. 1991). Furthermore, many signaling molecules 

including norepinephrine (Shimazu et al. 1986), brain-derived neurotrophic factor 

(BDNF) (Wang et al. 2007), and leptin (Jacob et al. 1997) have been discovered to affect 

feeding behavior when administered into the VMN, however the effect of a particular 

transmitter on feeding behavior is dependent upon receptor expression within the VMN 

and whether the signal results in excitation or inhibition of VMN neurons. Understanding 

specific neurotransmitters and how they modulate VMN activity provides insight into the 

neurocircuitry controlling VMN-dependent behaviors and potential therapeutic targets for 

obesity.    

The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is 

positioned to have a significant role in hypothalamic regulation of feeding behavior, but 

its signaling specifically within the VMN has yet to be clearly characterized. 

Intracerebroventricular (icv) administration of PACAP robustly decreases food intake 
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(Dore et al. 2013; Hawke et al. 2009; Mizuno et al. 1998; Morley et al. 1992; Mounien et 

al. 2009). In addition, PACAP has been linked to both leptin and BDNF signaling 

(Fukuchi et al. 2005; Hammack et al. 2009; Hawke et al. 2009; Pellegri et al. 1998; Yaka 

et al. 2003), both of which decrease food intake when administered into the VMN (Jacob 

et al. 1997; Wang et al. 2007). Interestingly, PACAP mRNA expression decreases 

following fasting (Hawke et al. 2009; Mounien et al. 2009) while chronic high fat diet 

increases PACAP mRNA in the VMN (Hawke et al. 2009), suggesting that PACAP-

expressing neurons of the VMN are important energy sensors that monitor and regulate 

body weight. 

PACAP is a 38 amino acid neuropeptide that belongs to the secretin super family 

of peptides that also includes vasoactive intestinal polypeptide (VIP) (Hannibal et al. 

1995a; Vaudry et al. 2009). Because of their high sequence homology PACAP not only 

binds and activates the PACAP receptor (PAC1R), but also the VIP receptors VPAC1 

and VPAC2. All three receptors are G protein-coupled with PACAP demonstrating an 

approximate 2-fold higher affinity for the PACAP receptor (PAC1R) compared to the 

VIP receptors. Interestingly, PACAP and VIP display equal affinity for the VIP 

receptors, whereas VIP has a very low affinity for the PAC1R (Vaudry et al. 2009). All 

PACAP receptors stimulate adenylate cyclase activity, however the receptors, especially 

PAC1R, are heavily alternatively spliced and several variants have been shown to 

activate other secondary messenger pathways (Dickson and Finlayson 2009; Ushiyama et 

al. 2007).  

Much of the work thus far involving PACAP and feeding behavior has focused on 

icv injections or global knockouts, neither of which can speak to specific sites of action 
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by which PACAP induces its effects (Adams et al. 2008; Hawke et al. 2009; Morley et al. 

1992; Mounien et al. 2009; Nakata et al. 2004). PAC1R mRNA expression is reported to 

be widespread throughout the central nervous system, with abundant expression in the 

hypothalamus, specifically in areas known to regulate feeding behavior such as the 

paraventricular nuclei (PVN), VMN, and arcuate nuclei (ARC) (Hashimoto et al. 1996).  

Given its discrete and abundant expression within the VMN, PACAP and its 

receptor may yield novel mechanisms for the control of feeding behavior. To further 

investigate the importance of highly localized PAC1R signaling we microinjected 

PACAP site-specifically into the VMN and subsequently measured feeding behavior. We 

further confirmed that changes in feeding behavior were first, mediated through the 

PAC1R subtype, and second, not a product of malaise. Our studies demonstrate that 

PACAP signaling within the hypothalamic VMN promotes a negative energy balance by 

decreasing food intake.  

Materials and Methods 

Animals 

Male Sprague-Dawley rats (Harlan; Madison, WI) weighing 225-250 g were 

individually housed in a climate controlled room with a 12 hr light/dark cycle (lights on 

at 0500h). Animals had free access to Harlan standard diet (8604 formulation) and water 

unless stated otherwise in specific experiments. Food consumption was measured with a 

BioDAQ Food Intake Monitor (Research Diets; New Brunswick, NJ) or calculated by 

pre-weighing food in each bin and subtracting the weight of non-ingested and spilled 
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food at the end of each measurement period. All procedures using animals were approved 

by the Marquette University Institutional Animal Care and Use Committee. 

Surgery   

Animals were anesthetized with a ketamine/xylazine/acepromazine (77:1.5:1.5 

mg/ml/kg; ip) cocktail and placed in a stereotaxic apparatus. 26 gauge bilateral guide 

cannulae (Plastics One; Roanoke VA) were placed 3 mm dorsal to the hypothalamic 

ventromedial nuclei (VMN) in all animals, and secured to the surface of the skull with an 

acrylic resin. The stereotaxic coordinates for the VMN injection site were:  

anterior/posterior, -2.5 mm from bregma; medial/lateral, ±0.6 mm from midline; 

dorsal/ventral, -9.2 mm from surface of the skull based on The Rat Brain in Stereotaxic 

Coordinates, 6th Edition (Paxinos and Watson 2007). Injectors extended 3 mm past the 

ventral tip of the cannulae reaching an injection site of -9.2 mm ventral from the surface 

of the skull. The upper incisor bar was positioned -3.3mm below horizontal zero. A 

bilateral dummy stylet placed in the guide cannulae was used to maintain patency. The 

animals were given at least five days to recover after cannulae installation before 

receiving drug or vehicle injections. During this time the animals were handled and guide 

cannulae were removed and replaced daily to acclimate the animals to the physical 

handling necessary during the experiment. Correct cannulae placements were confirmed 

at the conclusion of each experiment by microscopic examination of Nissl stained 

sections and only those with correct placement were included in the studies. 
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Microinjections and Injection Spread 

In all experiments, 0.25 µl/side of PACAP (PACAP38; California Peptide 

Research; Napa, CA) or saline was microinjected through bilateral guide cannulae over 

approximately two minutes in awake animals. Following each injection an additional 

minute elapsed before removing injectors to minimize backflow of injected material. At 

the completion of each experiment, brains were collected following rapid decapitation for 

in situ hybridization or confirmation of cannulae placement. The optimal spread of 

injection within the VMN was determined using different volumes (0.1, 0.25 µl) of 

biotinylated PACAP (PACAP38-Biotin; Anaspec; Fremont, CA).  One hour following 

biotinylated PACAP injections animals were anesthetized with a 

ketamine/xylazine/acepromazine cocktail, and transcardially perfused with 0.9% NaCl 

and 4% paraformaldehyde in phosphate-buffered saline. Brains were removed, sucrose 

embedded, and sectioned on a freezing microtome at 30 µm and stored in cryoprotectant 

solution at -20° C. Brain sections containing the injection sites and surrounding areas 

were then immunohistochemically stained using a primary antibody against biotin. 

Immunohistochemical signal was then compared to the cresyl violet staining of adjacent 

sections to determine surgical accuracy and the spread of the biotinylated PACAP 

injection within the VMN. 

Experiments 

Feeding behavior   

Animals (n=4 per group) were acclimated to the BioDAQ Food Intake Monitor 

for at least 7 days before the onset of the experiment. Approximately 2 hours prior to 
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lights off rats were weighed and injected bilaterally with vehicle, 25, or 50 pmol PACAP. 

Feeding measurements were collected for the next 18 hours at which time body weights 

were measured again. Afterwards, brains were collected to confirm cannula placement as 

well as retroperitoneal (including perirenal; rWAT) and epididymal white adipose tissue 

(eWAT), and interscapular brown adipose tissue (iBAT). iBAT was cleaned of white 

adipose tissue for measurement of uncoupling protein 1 (UCP1) mRNA content. 

To examine effects of PACAP on feeding behavior following an overnight fast, a 

separate cohort of animals (n=10 per group) was used. Food was removed from all 

animals just prior to lights off (1700h) the day before the experiment. The following 

morning (approximately 16 hours later) animals received bilateral injections of vehicle or 

50 pmol PACAP. 10 minutes after the injection, food was returned and feeding was 

measured for the next hour. 

Conditioned flavor avoidance  

To determine whether PACAP-induced hypophagia in the VMN was a 

consequence of malaise, a conditioned flavor avoidance (CFA) behavioral paradigm was 

used (Deutsch and Hardy 1977; Rinaman and Dzmura 2007). A baseline experiment was 

performed by water depriving naïve rats for 22 hours, and giving the animals a two-bottle 

choice test with one bottle containing novel vanilla flavored water (0.5% McCormick 

vanilla extract) and the other bottle containing novel almond flavored water (0.5% 

McCormick almond extract). For the CFA test, rats (n=5 per group) were water deprived 

for 22 hours then allowed 30 minutes of access to novel almond flavored water (0.5% 

McCormick almond extract) or novel vanilla flavored water (0.5% McCormick vanilla 

extract).  Flavors were divided among each group. Following the ingestion of flavored 
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water animals received a bilateral injection of 50 pmol PACAP into the VMN. Normal 

water was returned 30 minutes later and rats were allowed ad libitum access to water for 

the next 24 hours. Afterwards, rats were again water deprived for 22 hours then allowed 

30-minute access to the opposite flavor as on day 1 (see Fig. 3A).  Subsequent to access 

to flavored water, animals received a bilateral vehicle injection into the VMN and water 

was again returned for the next 24 hours. After both pairing days the rats were water 

deprived a final time for 22 hours followed by the test day in which rats were given a 

two-bottle choice with both flavors for 30 minutes. A preference ratio was generated 

from the test day to determine if rats avoided the flavor paired with the VMN PACAP 

injection. As a CFA positive control, another group of animals (n=5 per group) was 

included using lithium chloride (LiCl; 0.15M; 2% body weight, ip), as LiCl is well 

known to induce malaise. This group of rats was treated similar to the PACAP treated 

animals, but receiving only vehicle injections into the VMN and an ip injection of either 

saline or LiCl.  

PACAP receptor antagonism   

Approximately 1 hour before dark, rats (n=6 per group) were weighed and given a 

bilateral VMN pretreatment of either vehicle or 2.2 nmol of the specific PACAP receptor 

(PAC1R) antagonist, PACAP6-38 (Anaspec; Fremont, CA). After five minutes, rats 

received a second bilateral VMN injection of either vehicle or 220 pmol of PACAP. Food 

intake was measured manually for the next three hours, followed by a final 24-hour post-

injection measurement of food intake and body weight. 

In addition to food intake and body weight, changes in hypothalamic arcuate 

nuclei (ARC) neuropeptide mRNA expression were measured. In a similar experimental 
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design, rats (n=4 per group) received either bilateral VMN injections of vehicle or 220 

pmol PACAP and after one hour the animals were euthanized via rapid decapitation. 

Brains were removed quickly and frozen for analysis using semi-quantitative in situ 

hybridization for pro-opiomelanocortin (POMC), neuropeptide Y (NPY), and agouti-

related polypeptide (AgRP) mRNA levels. 

In Situ Hybridization 

Brains were cryostat sectioned coronally at 12 µm, thaw-mounted onto 

electrostatically clean slides, and stored at -80°C until post-fixed. Prior to hybridization, 

sections were post-fixed in 4% paraformaldehyde, rinsed in 0.1 M PBS (pH 7.4), 

equilibrated in 0.1 M triethanolamine (pH 8.0), and acetylated in triethanolamine 

containing 0.25% acetic anhydride. Sections were dehydrated through graded ethanol 

concentrations, de-lipidated in chloroform, re-hydrated to 95% ethanol, and air-dried. 

Standard in vitro transcription methods were used to generate riboprobes against PAC1R 

(Choi; Milwaukee, WI), NPY (Sabol, Bethesda, MD), AgRP (Schwartz, Seattle, WA), 

and POMC (Wilkinson, Seattle, WA), which were subsequently diluted in hybridization 

cocktail (Amresco; Solon, OH) with tRNA. Sections were hybridized overnight at 55°C 

with each 33P-labeled riboprobe.  After hybridization, slides were rinsed in 2x SSC buffer 

(pH 7.0). They were treated with RNase A in a 0.5 M sodium chloride, 10 mM Tris, 1 

mM EDTA buffer for 30 min at 37°C and then washed in the same buffer without RNase 

A for 30 min at 37°C. After a subsequent 1x SSC wash for 15 min at room temperature, 

slides were stringently washed in 0.5x SSC for 30 min at 65°C (AgRP, NPY, PAC1R) or 

68°C (POMC). Slides were then coated with Kodak autoradiographic emulsion NTB 

(Rochester, NY) and exposed for 11-22 days depending on the specific riboprobe to 
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produce silver grains. Following standard autoradiography development, NTB emulsion-

dipped sections were counterstained with 0.5% cresyl violet. 

Image Analysis 

Semi-quantitative analysis of silver grains was conducted using dark field 

microscopy (Axioskop-2, Zeiss; Thornwood, NY) and Axiovision image analysis 

software (Zeiss; Thornwood, NY). Optical transmission (OT) was determined from the 

integration of scattered light captured with a 5x objective and analyzed for intensity of 

region of interest and total area of reflected light. Background values measured in 

adjacent areas of tissue not containing hybridized probe were subtracted from all 

measurements.  As such, the reported units are arbitrary and will vary based on the 

proportion of the area of transmitted light compared to the background.  Since the area of 

distribution for each population of mRNA varies relative to the size of the background, 

the arbitrary units do not represent relative differences between various brain regions but 

can be used to measure changes within the same brain region.  Analyses of hypothalamic 

cell groups include the following distances posterior to Bregma: the arcuate nuclei for 

NPY and AgRP analysis: -3.1mm to -3.6mm, and POMC analysis: -2.6mm to -3.8mm. 

Immunohistochemistry 

 Floating coronal sections were incubated in primary antibody against biotin (goat 

anti-biotin; 1:5,000,000; Vector labs; Burlingame, CA) or PACAP (rabbit anti-

PACAP38; 1:10,000; Bachem; Torrance, CA) for 48 hours at 4°C. After washes in PBS 

sections were incubated in biotinylated secondary antibody (1:600; Vector labs) for 1 

hour at room temperature. Next, sections were washed again and incubated in a 
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peroxidase-based avidin/biotin solution using the Vectastain Elite ABC kit (Vector labs) 

for 1 hour at room temperature. Finally, immunohistochemical staining was visualized 

using a 3,3'-diaminobenzidine (DAB) chromogen solution containing nickel.  

Statistics 

Data are presented as means ± standard errors of the mean, and were analyzed 

statistically by analysis of variance (with repeated measures when appropriate). Tukey 

HSD analysis was used for all post-hoc group comparisons. Statistical analyses were 

performed using JMP9 (SAS Institute; Cary, NC). P values less than 0.05 were 

considered statistically significant. 

Results 

Hypothalamic PAC1R mRNA expression and microinjection spread 

Figure 2.1A shows in situ hybridization for PAC1R in the rat brain, confirming 

high  levels of mRNA expression in the hypothalamus (Hashimoto et al. 1996). Note the 

most abundant mRNA expression is found in the medial cell groups of the hypothalamus, 

which include the dorsomedial nuclei (DMN), VMN, and arcuate nuclei (ARC; Fig 2.1B 

and C).  In Figure 2.2, immunohistochemical staining of biotinylated PACAP confirmed 

that the 0.25 µl microinjection spread was an optimal volume (Fig 2.2A), as it did not 

exceed the boundaries of the VMN (right panel) delineated in the adjacent nissl stained 

section (left panel). Figure 2.2B shows PACAP immunoreactivity within the VMN of 

both neuronal cell bodies and terminals suggesting endogenous PACAP 

neurotransmission in this region. 
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Figure 2.1.  In situ hybridization of hypothalamic PAC1R mRNA 
distribution. (a) Darkfield photomicrograph (1.25X) of PAC1R 
mRNA expression in the rat. (b and c) Schematic and darkfield 
photomicrograph (5X) of region highlighted in (a) illustrating the 
dense expression of PAC1R mRNA in the medial nuclei of the 
hypothalamus. DMN = dorsomedial nuclei, VMN = ventromedial 
nuclei, ARC = arcuate nuclei, f = fornix. Anterior/Posterior coordinate 
of section depicted is -3.0 mm relative to Bregma. 
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Feeding Behavior 

 PACAP injected into the VMN decreased normal feeding as demonstrated by 

significant main effects by repeated measures ANOVA (P < 0.05; Fig. 2.3A). At three 

hours post-injection both 25 and 50 pmol doses of PACAP significantly reduced 

cumulative food intake compared to saline controls, with 25 pmol reducing feeding by  

 
 
Figure 2.2.  Ventromedial nuclei injection spread of biotinylated PACAP and endogenous PACAP 
protein immunohistochemistry. Staining for biotin-labeled PACAP (a; far right panel; scale bar = 200 
µm) accompanied by adjacent cresyl violet staining (a; far left panel) shows that spread of injectate is 
contained within the boundaries of the VMN. Schematic image corresponding to the level of 
injection site is shown in the middle panel (a). PACAP immunoreactivity in the VMN is shown at 
low magnification (b; middle panel), with a left inset (b; far left panel) showing terminal labeling in 
the VMN (white arrows), and the right inset (b; far right panel) showing neuronal cell body 
immunoreactivity (white arrows). Anterior/posterior coordinate of section depicted is -2.76 mm 
relative to Bregma.  Scale bar = 30 µm. 
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52% (P < 0.05) and 50 pmol by 80% (P < 0.01).  Furthermore, the 50 pmol dose of 

PACAP continued to significantly decrease cumulative food intake at four hours (P < 

0.05) and six hours post-injection (P < 0.01).  18 hours after injections no significant 

 
Figure 2.3.  PACAP injections into the VMN dose dependently decrease feeding behavior and 
retroperitoneal white adipose tissue (rWAT). (a) Both 25 pmol and 50 pmol bilateral PACAP 
injections  (0.25 µl/side) result in significantly reduced cumulative food intake after three hours, 
while the effect of 50 pmol PACAP lasts for six hours post-injection. (b) PACAP injections 
specifically reduce rWAT mass after 18 hours. (c) 50 pmol PACAP reduces refeeding (1 hour after 
PACAP administration ) in animals following an overnight fast. Data are expressed as mean ± 
SEM, * = P < 0.05 compared to vehicle. 
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differences were observed across any groups for food intake, but fat pad analysis revealed 

significant reduction in rWAT weight in animals receiving bilateral 50 pmol PACAP 

infusion (P < 0.05; Fig. 2.3B). No significant changes in eWAT or iBAT weights were 

found.  

 PACAP also significantly reduced food intake following an overnight fast. 

Bilateral VMN-injected PACAP at a dose of 50 pmol decreased food intake compared to 

saline controls after one hour of refeeding during the light cycle (P < 0.05; Fig. 2.3C). 

 

 

 PACAP receptor antagonism 

Specific antagonism of PAC1R prior to injection of PACAP completely blocked 

PACAP-induced decreases in food intake and body weight. Rats received a bilateral 

pretreatment of saline or PACAP6-38 approximately five minutes prior to bilateral saline 

or PACAP injections into the VMN. Significant main effects were observed by repeated  

 
 
Figure 2.4.  PACAP effects on feeding are mediated by the PAC1 receptor. (a) PACAP-induced 
hypophagia (220 pmol), and (b) body weight loss (24 hours) are prevented by the PAC1R 
antagonist, PACAP6-38 (2.2 nmol). Data are expressed as mean ± SEM, * = P < 0.05 compared 
to vehicle.  
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measures ANOVA for food intake (P < 0.05; Fig. 2.4A). Animals receiving vehicle as a 

pretreatment prior to PACAP showed significantly reduced food intake compared to 

vehicle controls with a reduction in food intake by 85% (P < 0.05) over the first hour, 

76% (P < 0.05) over two hours, and 79% (P < 0.01) over three hours. Food intake levels 

in animals receiving pretreatment with PACAP6-38 prior to PACAP did not differ from 

vehicle controls. Body weight measurements 24 hours after injections showed a 

Figure 2.5.  Hypothalamic PACAP injections do not produce 
conditioned flavor avoidance. (a) Schematic of the conditioned flavor 
avoidance behavioral paradigm shows the procedural timeline of the 
experiment. (b) Preference ratios expressed as mean ± SEM for PACAP 
(50 pmol) and LiCl (0.15 M; 2% body weight, ip) treated animals show a 
clear avoidance of the LiCl-paired flavor, but not the PACAP-paired 
flavor.  There was no difference in baseline intake of either flavor.  * = 
P<0.01 compared to saline-paired flavor. 
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significant decrease in the vehicle/PACAP group compared to all other groups (P < 0.05; 

Fig. 2.4B).   

Conditioned flavor avoidance 

Baseline consumption of the two novel flavors were tested by giving water 

deprived naïve rats a two-bottle choice test for 30 minutes, and measuring intake of both 

almond and vanilla flavored water. There was no difference in intake volumes of the two 

flavors in the baseline experiment (52% almond, 48% vanilla; Fig. 2.5A). In the 

conditioned flavor avoidance experiment (CFA) bilateral infusion of 50 pmol PACAP on 

pairing day one was evenly distributed between the two flavors. Furthermore, intake 

volumes on both pairing days were measured, and rats drank at least 13 ml of flavored 

water on each pairing day demonstrating that every animal experienced both flavors prior 

to the test day. PACAP had no effect on the two-flavor choice test, with animals drinking 

similar volumes of both the PACAP-paired and vehicle-paired flavor (Fig. 2.5B). As a 

positive control, a separate group of animals receiving ip injections of LiCl showed 

significant avoidance of the LiCl-paired flavor compared to saline treated controls 

(P<0.01; Fig 2.5B). 

Neuropeptide mRNA expression changes 

Semi-quantitative in situ hybridization analyses of AgRP, NPY, and POMC 

mRNA in the hypothalamic arcuate nuclei following bilateral PACAP injections into the 

VMN were performed at one hour post-injection (Fig 2.6A). Quantification of the in situ     

hybridization revealed a significant increase in arcuate POMC mRNA expression by 52%  
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Figure 2.6.  In situ hybridization of hypothalamic arcuate nuclei neuropeptide mRNA 
expression levels following PACAP injection into the VMN. (a) Representative darkfield 
photomicrographs showing mRNA expression levels of POMC, NPY, and AgRP in the ARC 
from vehicle treated (left side of photo) and PACAP treated (220 pmol; right side of photo) 
animals. (b) Graphical representation of optical transmission from in situ hybridization signal 
for each neuropeptide. Data are expressed as mean ± SEM, * = P < 0.05 compared to vehicle. 
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(P < 0.05; Fig. 2.6B), while no significant differences were observed in either arcuate 

AgRP or NPY mRNA expression. 

Discussion 

Bilateral injections of PACAP into the VMN produce a marked reduction in 

feeding under both normal and food restricted conditions. Importantly, this reduction in 

feeding is not the result of malaise induced by PACAP administration, as there was no 

evidence of conditioned flavor avoidance. To diminish potential confounding 

contributions of PAC1R stimulation in surrounding hypothalamic cell groups, we made 

efforts to confine our PACAP injections within the boundaries of the VMN, which was 

clearly demonstrated by the biotinylated PACAP. 

Under normal feeding conditions, injections of either 25 pmol or 50 pmol PACAP 

per side into the VMN significantly decreased in cumulative feeding by three hours post-

injection, and lasting for up to six hours post-injection in animals receiving the higher 

dose of PACAP. The delayed effect on feeding behavior may be a result of injections 

administered approximately two hours prior to lights off, a time when normal food intake 

is still considerably low suggesting that PACAP-induced suppression of feeding behavior 

occurs when endogenous feeding behavior is actively stimulated.  This is further 

supported by results following an overnight fast, where PACAP injections effectively 

reduced feeding in food-deprived animals one hour post-injection, as well as in the 

PACAP receptor antagonist study where animals injected with PACAP more proximal to 

the onset of dark did significantly reduce feeding after one hour. In addition to 

influencing feeding behavior, we also observed a significant reduction in rWAT weight at 

18 hours post-injection with no differences in any of the other fat depots measured. While 
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the reduction in only rWAT is curious and the underlying mechanism still unknown, 

others have also found rWAT to be more labile during conditions of mild/moderate 

weight loss (Giordano et al. 2005; Li et al. 1998).  

Results obtained following PACAP injections into the VMN closely resemble 

reports of ventricular PACAP injections (Hawke et al. 2009; Morley et al. 1992; Mounien 

et al. 2009), which suggests that the medial hypothalamus may be an important site for 

PACAP signaling pertaining to energy homeostasis. This is further supported by the 

dense expression of PAC1R mRNA found in multiple subdivisions of the medial 

hypothalamus such as the dorsomedial (DMN), arcuate (ARC), and VMN, all of which 

are major contributors to the control of energy balance (Fig. 2.1).  Although resulting in 

different patterns in feeding behavior, lesions of all three hypothalamic subgroups 

produce obese rats (Choi and Dallman 1999). To begin identifying the circuitry involving 

PACAP signaling and energy regulation, we demonstrate that changes in feeding 

behavior following PACAP administration into the VMN are specifically mediated 

through the PAC1R. In addition, while our chosen dose of PAC1R antagonist did not 

produce significant differences in feeding from vehicle treated controls, food intake was 

elevated in these animals suggesting that a higher dose of PACAP6-38 may have 

produced a significant increase. Changing the timing of PAC1R antagonist injections to a 

period of minimal feeding behavior would aid in making conclusions about the role of 

endogenous PACAP signaling in the VMN and feeding behavior. As an initial point of 

observation, the VMN may function as an important, but not exclusive, site of action for 

mediating the behavioral effects of PACAP signaling.  For example, PACAP’s actions in 

the hypothalamus may also include direct or indirect activation of feeding and/or 
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metabolic circuitries involving other hypothalamic cell groups such as the PVN and 

ARC. As mentioned earlier, both the PVN and ARC have prominent roles in regulating 

energy balance and are both known to contain both PACAP receptors and PACAP 

protein, making these areas attractive targets for future studies.   

Previous reports have suggested PACAP-induced hypophagia following icv 

injection in mice may stimulate melanocortin signaling in the ARC, a well characterized 

system known to decrease feeding behavior (Mounien et al. 2009). Indeed, PACAP 

receptors have been found on both POMC and NPY containing neurons in the ARC 

through which activation leads to stimulation of POMC mRNA, c-fos expression and 

cytosolic Ca2+ concentrations (Mounien et al. 2006a; Mounien et al. 2006b; Mounien et 

al. 2009; Nakata et al. 2004).  However, the current results demonstrate that bilateral 

injections of PACAP directly into the VMN also increase mRNA expression of POMC in 

the ARC one hour after injection without affecting NPY or AgRP expression. Since the 

vast majority of neurons in the VMN are glutamatergic (Fu and van den Pol 2008), 

activation of PACAP receptors in the VMN could have an excitatory effect on VMN 

neurons through modulation of AMPA and NMDA currents, as seen in the hippocampus 

(Costa et al. 2009; Macdonald et al. 2005; Yaka et al. 2003), leading to VMN-mediated 

excitation of POMC neurons in the ARC (Sternson et al. 2005). Additionally, strong 

efferent connections from the VMN to the nucleus of the solitary tract (NTS) have been 

established, and it is possible that stimulation of the VMN by PACAP may cause 

increased POMC signaling in the NTS as well (Canteras et al. 1994). In support of the 

current data, increased POMC signaling in the NTS has also been associated with 

inhibition of food intake (Li et al. 2007; Zhang et al. 2010).  
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While there has been evidence for PACAP stimulation of NPY neurons in the 

ARC (Mounien et al. 2006a; Nakata et al. 2004), our data did not demonstrate any effect 

at one hour post-injection, possibly arguing for POMC-specific ARC activation by 

PAC1R expressing neurons from the VMN (Sternson et al. 2005).  Given the initial 

constellation of effects produced by icv or ex vivo application of PACAP such as 

hypophagia, thermogenesis, increased POMC and NPY signaling, further studies are 

needed to delineate PACAP’s integrated actions on multiple hypothalamic cell groups 

(Masuo et al. 1995; Mounien et al. 2009; Nakata et al. 2004; Resch et al. 2011). 

Although the VMN is known to express large amounts of PACAP, which appear 

to be responsive to varying nutritional conditions (Hawke et al. 2009; Mounien et al. 

2009), the origin of PACAP neurons synapsing onto VMN neurons is not known. In light 

of the current results, brain regions releasing PACAP into the medial hypothalamus that 

are sensitive to signals of nutritional status are likely sources of PACAP input into the 

VMN. One such candidate is the medial amygdala because of its dense PACAP mRNA 

expression, identified connections to the VMN, and its glucose sensing capability (Anand 

et al. 1964; King 2006a; Sakaguchi and Bray 1987; Sudo et al. 1991; Zhou et al. 2010). 

In addition to extra-hypothalamic regions of PACAP input, paracrine/autocrine signaling 

from VMN neurons themselves may also provide a notable source of PACAP signaling, 

especially since the VMN are well known to have extensive intrinsic and contralateral 

VMN-VMN synaptic circuitry (Kiss et al. 2011; Nishizuka and Pfaff 1989). Further 

anatomical studies are needed to identify hypothalamic circuitry involving PACAP 

signaling. 
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CHAPTER III 
 

MULTIPLE SITES OF ACTION FOR PACAP-INDUCED HYPOPHAGIA IN THE 
HYPOTHALAMUS: FOCUS ON GLUTAMATERGIC CELL GROUPS 

 
 

Introduction 
 
 

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a key regulator of 

several hypothalamic systems, including stress (Agarwal et al. 2005), osmoregulation 

(Gillard et al. 2006), thermoregulation (Gray et al. 2002), and body weight (Hawke et al. 

2009). PACAP was first discovered to influence energy homeostasis through inhibition of 

feeding in mice following a single intracerebroventricular (icv) injection of the peptide 

(Morley et al. 1992). These results combined with reports of diet-specific alterations of 

PACAP mRNA expression in the hypothalamic ventromedial nuclei (VMN) suggest that 

PACAP neurons are responsive to nutritional status and directly tied to the regulation of 

feeding (Hawke et al. 2009; Mounien et al. 2009).  

As a ligand, PACAP binds to three different G protein-coupled receptors (GPCR), 

the PAC1 receptor (PAC1R), and the receptors originally discovered as targets of 

vasoactive intestinal polypeptide (VIP), VPAC1R and VPAC2R (Dickson and Finlayson 

2009). Although PACAP stimulates all three receptor subtypes it has the highest affinity 

for the PAC1R, whereas VIP is less likely to utilize the PAC1R due to its low binding 

affinity compared to the VPACRs (Gottschall et al. 1990; Lam et al. 1990).  

Due to the limited availability of conditional PACAP transgenic models, site-

specific injections of PACAP and related pharmacological agents directly into discrete 

hypothalamic nuclei are necessary to selectively investigate the role of PACAP signaling 
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within the hypothalamus. Recently, we reported that site-specific injections of PACAP 

isolated to the VMN reduce food intake via PAC1R signaling (Resch et al. 2011). Despite 

abundant PACAP receptor expression in several different hypothalamic nuclei, little 

attention has been given to other hypothalamic cell groups with regard to PACAP’s 

effects on food intake and body weight. In the few studies that have examined PACAP 

signaling in the hypothalamus, the paraventricular nuclei (PVN) are reported to show 

PACAP terminal immunoreactivity (Das et al. 2007; Legradi et al. 1998), and following 

direct administration of PACAP into the PVN changes in grooming behavior (Norrholm 

et al. 2005) and hepatic glucose production (Yi et al. 2010). However, these studies did 

not report on PACAP-induced changes in feeding or body weight.  Given that PVN 

lesion studies demonstrate an imperative role for this area of the hypothalamus in the 

regulation of energy balance (Leibowitz et al. 1981), and both the PVN and PACAP have 

been linked to melanocortin signaling involved in control of body weight (Balthasar et al. 

2005; Mounien et al. 2009), further examination of the relationship between PACAP 

signaling and PVN-mediated energy homeostasis is warranted. In order to examine the 

effects of PACAP signaling in the hypothalamus on food intake we have executed site-

specific PACAP injections in two separate hypothalamic nuclei, the PVN and VMN.  

Materials and Methods 

Animals 

Male Sprague-Dawley rats (Harlan; Madison, WI) weighing 225-250 g were 

individually housed in a climate controlled room with a 12 hr light/dark cycle. Animals 

had free access to Harlan standard diet (8604 formulation) and water. Food consumption 
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was measured with a BioDAQ Food Intake Monitor (Research Diets; New Brunswick, 

NJ) or calculated by pre-weighing food in each bin and subtracting the weight of non-

ingested and spilled food at the end of each measurement period. All procedures using 

animals were approved by the Marquette University Institutional Animal Care and Use 

Committee. 

Surgery   

Animals were anesthetized with a ketamine/xylazine/acepromazine (77:1.5:1.5 

mg/ml/kg; ip) cocktail and placed in a stereotaxic apparatus. 26 gauge bilateral guide 

cannulae (Plastics One; Roanoke VA) were placed 3 mm dorsal to the target site in all 

animals, and secured to the surface of the skull with an acrylic resin. The stereotaxic 

coordinates for the PVN injection site were anterior/posterior, -1.7 mm from bregma; 

medial/lateral, ±0.5 mm from midline; dorsal/ventral, -4.9 mm, and for the VMN 

anterior/posterior, -2.5 mm from bregma; medial/lateral, ±0.6 mm from midline; 

dorsal/ventral, -6.2 mm from surface of the skull based on The Rat Brain in Stereotaxic 

Coordinates, 6th Edition (Paxinos and Watson 2007). Injectors extended 3 mm past the 

ventral tip of the cannulae reaching an injection site of -7.9 mm for PVN and -9.2 mm for 

VMN ventral from the surface of the skull. The upper incisor bar was positioned -3.3 mm 

below horizontal zero. A bilateral dummy stylet placed in the guide cannulae was used to 

maintain patency. The animals were given at least five days to recover after cannula 

installation before receiving drug or vehicle injections during which time the animals 

were handled and dummy stylets were removed and replaced daily in order to acclimate 

the animals to the physical handling necessary during experiments. Correct cannulae 

placements were confirmed at the conclusion of each experiment by microscopic 
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examination of Nissl stained sections and only those with correct placement were 

included in the studies. 

Microinjections and Injection Spread 

In all experiments, PACAP  (50 pmol/0.25 µl/side; PACAP38; California Peptide 

Research; Napa, CA), PACAP6-38 (500 pmol/0.25 µl/side; Anaspec; Fremont, CA), 

VIP6-28 (500 pmol/0.25 µl/side; Bachem; Torrance, CA), or saline vehicle was 

microinjected through bilateral guide cannulae over approximately two minutes in awake 

animals while gently restrained. Following each injection an additional minute elapsed 

before removing injectors to minimize backflow of injected material. The optimal 

injection volume and subsequent spread within the VMN was determined previously 

(Resch et al. 2011), and the same procedure was used for PVN injection spread analysis. 

Briefly, biotinylated PACAP (50 pmol/0.25 µl/side; PACAP38-Biotin; Anaspec; 

Fremont, CA) was injected into the PVN or VMN.  One hour following biotinylated 

PACAP injections animals were perfused with 0.9% NaCl and 4% paraformaldehyde in 

phosphate-buffered saline, and brains were removed. Brain sections containing the 

injection sites and surrounding areas were then immunohistochemically stained using a 

primary antibody against biotin. Immunohistochemical signal was then compared to the 

cresyl violet staining of adjacent sections to determine surgical accuracy and the spread 

of the biotinylated PACAP injection within the target injection site. 

Feeding Behavior 

Animals were weighed daily and acclimated to the BioDAQ Food Intake Monitor 

for at least 7 days before the onset of the experiment. On the experiment day, 
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approximately 1 hour prior to lights off rats were injected bilaterally with vehicle or 50 

pmol PACAP. Feeding measurements were collected for the next 24 hours, as well as a 

final measurement of body weight at 24 hours post-injection. For BioDAQ meal pattern 

analysis the data were analyzed over the first six hours post-injection to determine 

latency to meal onset, meal amount, duration, and eating rate. Meals were defined as food 

intake of 0.2 g or more with less than 15 minutes elapsing between feeding bouts (Dunn-

Meynell et al. 2009; Farley et al. 2003). For studies involving antagonism of PACAP 

receptors, rats were bilaterally pretreated with saline, PACAP6-38  (500 pmol/0.25 

µl/side; Anaspec; Fremont, CA), or VIP6-28 (500 pmol/0.25 µl/side; Bachem; Torrance, 

CA).  PACAP6-38 is a widely used PAC1R antagonist however it also has antagonistic 

properties at the VPAC2R (Gourlet et al. 1995; Hawke et al. 2009; Mounien et al. 2009; 

Robberecht et al. 1992), while VIP6-28 is reported to be a potent nonselective VPAC 

receptor antagonist (Fishbein et al. 1994; Mohney and Zigmond 1998; Shoge et al. 1998) 

shown to be effective in the hypothalamus (Hermes et al. 2009). Five minutes after 

administering the antagonist rats received a second bilateral injection of either saline or 

50 pmol of PACAP followed by subsequent physiological and behavioral measurements.  

In Situ Hybridization 

Brains were sectioned coronally at 12 µm using a cryostat, thaw-mounted onto 

electrostatically clean slides, and stored at -80°C until post-fixed. Prior to hybridization, 

sections were post-fixed in 4% paraformaldehyde, rinsed in 0.1 M PBS (pH 7.4), 

equilibrated in 0.1 M triethanolamine (pH 8.0), and acetylated in triethanolamine 

containing 0.25% acetic anhydride. Standard in vitro transcription methods were used to 

generate both sense and antisense riboprobes recognizing VPAC2R and PAC1R 
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transcripts (Choi; Milwaukee, WI), which were subsequently diluted in hybridization 

cocktail (Amresco; Solon, OH) with tRNA. Sections were hybridized overnight at 55°C 

with either digoxigenin (DIG) or fluorescein isothiocyanate (FITC) labeled riboprobes.  

After hybridization, slides were treated with RNase A, and stringently washed in 0.5x 

SSC at 65°C (VPAC2R and PAC1R) for 30 minutes. Slides were then incubated with an 

antibody against DIG or FITC conjugated to horseradish peroxidase (HRP; Roche; 

Indianapolis, IN) overnight at 4° C. Riboprobe signal was further enhanced using the 

TSA-plus fluorophore system with either fluorescein or Cy3 (Perkin Elmer; Waltham, 

MA). Image capture was performed using fluorescent microscopy (Axioskop-2, Zeiss; 

Thornwood, NY) and Axiovision image analysis software (Zeiss; Thornwood, NY). 

Biotinylated PACAP injection spread was visualized following standard free-

floating immunohistochemical techniques. Floating coronal sections were incubated in 

primary antibody against biotin for 24 hours at 4°C. After washing in PBS, sections were 

incubated in biotinylated secondary antibody (Vector labs; Burlingame, CA) for 1 hour at 

room temperature. Following a second wash, sections were incubated in a peroxidase-

based avidin/biotin solution using the Vectastain Elite ABC kit (Vector labs; Burlingame, 

CA) for 1 hour at room temperature. Immunohistochemical staining was visualized using 

a nickel enhanced 3,3'-diaminobenzidine (DAB) chromogen solution.  

Statistics 

Data are presented as means ± standard errors of the mean, and were analyzed 

statistically by analysis of variance (with repeated measures when appropriate). Fischer 

LSD analysis was used for all post-hoc group comparisons. Statistical analyses were 
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performed using Sigma Plot 11 software (Systat Software Inc.; San Jose, CA). P < 0.05 

were considered statistically significant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Results  

 To assess diffusion of PACAP microinjections into our target nuclei we injected a 

biotinylated PACAP peptide to simulate behavioral experiments followed by histological 

analysis of injection sites. Following immunohistochemical detection of the biotinylated 

PACAP (Fig. 3.1) we confirmed that peptide injection volumes were appropriate and did 

not diffuse outside of the borders of the PVN or VMN. Our prior studies have indicated 

that bilateral PACAP injections of 50 pmol into the VMN significantly decreased food  

 
Figure 3.1.  Injection spread of biotin-labeled PACAP within the PVN and 
VMN. Staining for biotin-labeled PACAP (far right panel) accompanied by 
adjacent cresyl violet staining (far left panel) shows that spread of injectate is 
contained within the boundaries of the PVN (A; Bregma -1.8 mm) or VMN (B; 
Bregma -3.0 mm). Schematic image corresponding to the level of injection site 
is shown in the middle panel adapted from The Rat Brain in Stereotaxic 
Coordinates 6th Edition (Paxinos and Watson 2007). PVN, paraventricular 
nuclei; AHA, anterior hypothalamic area; VMN, ventromedial nuclei  
 



57 

 

intake (Resch et al. 2011), but the effects of PACAP injections into the PVN on food 

intake had yet to be reported. We performed feeding behavior experiments under free-

feeding conditions starting at approximately 1 hour prior to lights off following saline or 

PACAP injections into the PVN and compared subsequent responses to PACAP-induced 

 
 
Figure 3.2.  PACAP injections into the PVN and VMN both decrease feeding behavior and 
body weight. 50 pmol bilateral PACAP injections (0.25 µl/side) into the PVN (A) or VMN (B) 
result in significantly reduced cumulative food intake at 3 and 5 hours post-injection (left), 
accompanied by a reduction in body weight 24 hours later (right). Data are expressed as mean 
± SEM, * = P < 0.05 compared to saline. 
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hypophagia in the VMN. Feeding behavior in both PVN and VMN animals treated with 

PACAP showed significant main effects by two-factor repeated measures ANOVA  

(treatment P < 0.01; time P < 0.001; interaction P < 0.05). Multiple comparison analysis 

performed at 1, 3, and 5 hours post-injection resulted in significant differences at 3 (PVN,  

P < 0.001; VMN, P < 0.01) and 5 hours (PVN, P < 0.001; VMN, P < 0.001) compared to 

controls (Fig 3.2). Body weight following the injection day was also significantly 

decreased (Fig. 3.2) with PVN-PACAP treated animals losing 3% (P < 0.001) and VMN-

PACAP treated animals losing 2 % (P < 0.05) of their pre-injection body weight 

compared to saline injections which left body weight unchanged. 

 
Table 3.1. Meal pattern analysis following PACAP treatment in the PVN and VMN 

 PVN VMN 

  Saline PACAP Saline PACAP 

Latency to 1st meal (min) 47.9 ± 12.8   105.9 ± 25.1*     29.6 ±  6.8     89.3 ± 27.5* 

Latency to 2nd meal (min)     93.9 ± 13.1     75.6 ± 15.6     62.8 ± 10.1     60.2 ± 11.6 

Duration of 1st meal (min)      42.6 ±  7.6     14.5 ±   4.0*     37.4 ±  5.8     48.8 ±   7.1 

Duration of 2nd meal (min)     31.9 ±  4.8     15.4 ±   1.8*     28.8 ±  4.5     22.9 ±   3.6 

Amount of 1st meal (g)       2.8 ±  0.7       1.0 ±   0.2*       2.8 ±  0.4       2.1 ±   0.3 

Amount of 2nd meal (g)       3.0 ±  0.4       1.4 ±   0.3*       3.1 ±  0.5       2.5 ±  0.5 

Average meal size (g)       3.1 ±  0.3       1.5 ±  0.2*       2.8 ±  0.2       2.3 ±  0.3 

Meal Frequency       2.6 ±  0.2       2.5 ±  0.4       3.7 ±  0.3       3.3 ±  0.3 

Total time spent eating (min)     91.2 ±  8.4     56.3 ± 14.5*   107.2 ±  6.9   104.6 ± 10.6 

% of total time spent eating     25.3 ±  2.3     15.6 ±   4.0*     30.5 ±  1.7     29.1 ±  3.0 

Rate of eating (mg/min)     22.0 ±  1.8     13.1 ±   2.7*     27.6 ±  1.1     21.0 ±  2.2* 

24 hr intake (g)     19.4 ±  1.2     16.9 ±   1.0     21.7 ±  0.8     19.3 ±  1.1 

Meal patterns were analyzed for six hour post-injection. Data are mean ± SEM. * = P < 0.05 

compared to appropriate anatomical control 

  

 In order to better characterize the hypophagia produced by hypothalamic PACAP 

signaling we evaluated meal patterns from the experiment shown in Figure 3.2 (Table 
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3.1). PVN injections of PACAP significantly decreased meal size (1st meal, P < 0.05; 2nd 

meal, P < 0.01), meal duration (1st meal, P < 0.01; 2nd meal, P < 0.01), average meal size 

(P < 0.01), time spent eating (total time, P < 0.05; % time, P < 0.05), and rate of eating (P 

< 0.01), while also increasing the time it took to initiate the first meal (1st meal, P < 0.05; 

2nd meal, P = 0.375). In contrast, PACAP administration into the VMN only produced a 

decrease in the rate of eating (P < 0.05), and increased the latency to initiate the first meal 

(1st meal, P < 0.05; 2nd meal, P = 0.863). While PACAP treated animals ate less, neither 

PVN nor VMN injected animals showed significantly altered 24-hour intake.  

 

 

The diversity of effects that PACAP produces physiologically and behaviorally 

may be due to its multiple receptor subtypes, and the anatomical distribution of specific 

receptor expression. Fluorescent in situ hybridization revealed that the VPAC2R and  

 
Figure 3.3.  In situ hybridization of hypothalamic PACAP receptor mRNA. mRNA expression of the 
VPAC2R (middle panel) and PAC1R (far right panel) in the hypothalamic paraventricular (A; 
Bregma -1.8 mm), and ventro/dorsomedial nuclei (B; Bregma -3.0 mm) accompanied by adjacent 
sections stained with cresyl violet depicting the corresponding hypothalamic anatomy in the far left 
panel. 
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PAC1R in the hypothalamus each have distinctive expression patterns (Fig. 3.3). 

VPAC2R mRNA expression was abundant in the central dorsomedial nuclei (DMN) and 

the medial PVN, while VPAC2R expression in the VMN was not detected. On the other 

hand, PAC1R mRNA expression was much more widely distributed, with abundant 

expression found throughout the hypothalamic nuclei, including PVN, DMN, VMN, and 

 
Figure 3.4.  PACAP effects on feeding are mediated by PAC1R in both the PVN and VMN. In both 
the PVN (A) and VMN (B), PACAP-induced hypophagia (50 pmol/side) is prevented by the 
PAC1R antagonist, PACAP6-38 (500 pmol/side; right), but not the VPACR antagonist VIP6-28 
(500 pmol/side, left). Data are expressed as mean ± SEM, * = P < 0.05 compared to saline.  
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ARC nuclei. Furthermore, the wide distribution of PAC1R mRNA expression may 

represent expression in both glial and neuronal cell types (Figiel and Engele 2000). 

Hybridization with sense probes to control for nonspecific binding did not show any 

signal for either receptor probe (data not shown). 

 Due to the expression of multiple PACAP receptors in the hypothalamus, we 

assessed the involvement of PAC1 and VPAC receptors in the regulation of feeding 

behavior by administering receptor antagonists prior to PACAP injections. Pretreatment 

with VIP6-28 did not alter the suppression of feeding behavior produced by PACAP in 

either the PVN or VMN compared to controls (Fig. 3.4). However, administration of 

PACAP6-38 completely reversed the effects of PACAP administration into the PVN at 

both 3 (P < 0.05) and 5 hr (P < 0.01) time points (Fig 3.4A). Similarly, pre-treatment with 

PACAP6-38 blocked the effects of PACAP administration into the VMN at both 3 (P < 

0.05) and 5 hrs (P < 0.001) post-injection (fig 3.4B).  

Discussion 

The current study demonstrates that site-specific PACAP injections into either the 

ventromedial (VMN) or paraventricular nuclei (PVN) of the hypothalamus both produce 

long-lasting reductions in food intake, as well as changes in meal patterns, altered 

glucose homeostasis, and significant body weight loss 24 hours post-injection. 

Importantly, site-specific hypothalamic injections do not cause malaise (Resch et al. 

2011) that can sometimes arise following exogenous peptide administration. Although 

there are multiple PACAP receptor subtypes expressed in the hypothalamus, the 

reduction in feeding behavior appears to be mediated primarily by the PAC1R subtype 

which is in agreement with prior feeding studies (Hawke et al. 2009; Mounien et al. 
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2009; Resch et al. 2011).  Specifically, in both the PVN and VMN, the effects of PACAP 

could be blocked by the VPAC2R/PAC1R antagonist PACAP6-38, but not by the 

VPAC1R/VPAC2R antagonist VIP6-28.  

To specifically address the impact of PACAP signaling on feeding behavior we 

placed site-specific microinjections of PACAP into both the PVN and VMN, which 

produced significant reductions in feeding.  However, there were differences in PACAP-

mediated meal pattern changes in the PVN versus the VMN. PACAP injected into the 

PVN produced several alterations in meal patterns, including increased latency to meal 

initiation, decreased meal size, decreased meal duration, decreased time spent eating, and 

decreased rate of eating. In contrast, PACAP injected into the VMN only produced an 

increase in the latency to meal initiation, and a decrease in the rate of eating. Taken 

together with the cumulative food intake data, PACAP’s functional role in the PVN may 

be more specific to the regulation of feeding behavior compared to its actions in the 

VMN. These results are consistent with loss of function studies involving the PVN and 

VMN where there is a pronounced hyperphagia in PVN-lesioned animals, while loss of 

function following VMN-lesions produces a more modest hyperphagia often restricted to 

the light period (Choi and Dallman 1999). In light of the current data, combined with 

anatomical and biochemical reports involving PACAP, stress, and the hypothalamus 

(Agarwal et al. 2005; Choi et al. 1996; Dore et al. 2013; Hammack et al. 2010) it is 

plausible that central stress pathways may play a substantial role in the anorectic response 

caused by PACAP within these hypothalamic nuclei. Further investigation of stress and 

satiety mechanisms utilizing PACAP signaling will be important to the understanding of 

the role of this pleiotropic neuropeptide.  
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Due to the heterogeneous PACAP receptor population in the hypothalamus, and 

in particular the PVN, it was necessary to determine which PACAP receptor subtype 

mediated the effects on food intake. The most abundant and widely distributed PACAP 

receptor in the hypothalamus is the PAC1R, with high mRNA expression in all 

hypothalamic mediobasal cell groups. There is little evidence for any appreciable 

expression of VPAC1R mRNA in the hypothalamus, however the VPAC2R is expressed 

in several hypothalamic areas including the suprachiasmatic nuclei (SCN), PVN, and 

dorsomedial nuclei (DMN) (Usdin et al. 1994). Expression of multiple PACAP receptor 

subtypes in the hypothalamus suggests PACAP is a multifunctional neuropeptide signal 

that contributes to several behavioral and physiological systems. Feasibility of this 

concept is supported by reports linking PACAP to stress (Ressler et al. 2011), anxiety 

(Hammack et al. 2009), feeding (Hawke et al. 2009; Mounien et al. 2009; Resch et al. 

2011), and glucose mobilization (Yi et al. 2010), all systems that may work 

synergistically, and converge on PACAP-enriched anatomical areas, such as the 

hypothalamus and amygdala (Hannibal et al. 1995a).  

We examined both the VPAC2R/PAC1R antagonist PACAP6-38 and the 

VPAC1R/VPAC2R antagonist VIP6-28 (Fishbein et al. 1994) on their ability to inhibit 

the affects of PACAP on feeding. Even though there is no data to support VPAC1R 

expression in the hypothalamus, we used VIP6-28 to antagonize both the VPAC1R and 

VPAC2R subtypes to fully eliminate the participation of the VPAC receptors (Usdin et 

al. 1994). Furthermore, because PACAP6-38 has antagonistic activity at the VPAC2 

receptor, VIP6-28 was utilized to rule out possible contributions of VPAC2R antagonism 

by PACAP6-38. Our findings were clear that, in both the PVN and VMN, pretreatment 
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with PACAP6-38 prior to PACAP injection completely abolished the effects of PACAP 

on feeding. While we had reported previously that the PAC1R was important for the 

feeding phenotype observed following PACAP injection into the VMN (Resch et al. 

2011), it is worthy to note that VIP6-28 did not alter the effects of PACAP in the PVN on 

feeding behavior despite recent reports demonstrating the importance of PVN VPAC2Rs 

for the regulation of PACAP-induced hepatic glucose production (Yi et al. 2010). 

Additionally, PAC1R antagonist treatment alone caused increased feeding in the PVN, 

however the results were not significant, which suggests a dose-response of PACAP6-38 

at higher concentrations may result in significantly increased food intake and provide 

stronger evidence for endogenous PACAP signaling. Taken together there may be 

anatomical and receptor specific roles for PACAP in the PVN with PAC1R governing the 

feeding behavior response, while VPAC2R may govern the sympathetic-driven glycemic 

response to PACAP.  
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CHAPTER IV 
 
 

SITE-SPECIFIC ACTIVATION OF ENERGY EXPENDITURE WITHIN THE 
HYPOTHALAMUS BY PACAP 

 
 

Introduction 
 
 
  PACAP signaling is an important regulator of feeding behavior (Chance et al. 

1995; Hawke et al. 2009; Morley et al. 1992; Mounien et al. 2009; Resch et al. 2011; 

Resch et al. 2013). Yet, pair-feeding experiments demonstrate that body weight loss from 

PACAP injections is not solely due to decreased food intake, suggesting that PACAP 

may also increase energy expenditure (Hawke et al. 2009). In fact, icv injections of 

PACAP increase core body temperature, oxygen consumption, and locomotor activity 

(Hawke et al. 2009; Masuo et al. 1995; Mizuno et al. 1998), as well as increases in 

sympathetic nerve activity and heart rate (Tanida et al. 2010).  

In contrast to pharmacological data, PACAP knockout mice are not metabolically 

insufficient nor are they overweight. Instead, PACAP and PAC1R knockout mice are 

lean, temperature sensitive, and have impaired glucose homeostasis (Adams et al. 2008; 

Gray et al. 2002; Hamelink et al. 2002; Jamen et al. 2000; Tomimoto et al. 2008). Given 

the disparity between phenotypes of PACAP knockout mice and pharmacological data 

from central injections, and reports of PACAP and PAC1R knockout mice exhibiting 

complications that result in early lethality (Gray et al. 2001; Otto et al. 2004), a more 

specific approach to investigate the regulation of metabolism by PACAP is needed.  

 PACAP and PAC1R expression is abundant in the hypothalamus (Hannibal 2002; 

Hannibal et al. 1995a; Hashimoto et al. 1996; Resch et al. 2011; Resch et al. 2013), and 
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PACAP signaling exerts control over the autonomic nervous system in order to regulate 

glycemia and metabolism.  Recently we reported that intrahypothalamic injection of 

PACAP into the PVN or VMN reduces food intake and body weight (Resch et al. 2011; 

Resch et al. 2013), however each of these nuclei are also involved in regulation of energy 

expenditure and glucose homeostasis.  The VMN are particularly important for the 

counterregulatory response to hypoglycemia, stimulating hormonal release that drives 

glucose production in times of low blood glucose (Borg et al. 1997; Borg et al. 1994; 

Borg et al. 1995; Fioramonti et al. 2010; Levin et al. 2008). Similarly, the PVN play a 

role in sympathetic activation of hepatic glucose production, which is reported to involve 

PACAP signaling (Kalsbeek et al. 2004; Yi et al. 2010). Furthermore, both the PVN and 

VMN may regulate brown adipose tissue (BAT) thermogenesis, a critical means of heat 

generation and energy expenditure for rodents, however findings arguing for and against 

this notion have been described (Amir 1990a; Amir 1990b; Bamshad et al. 1999; Kim et 

al. 2011; Madden and Morrison 2009; Oldfield et al. 2002; Perkins et al. 1981; Sakaguchi 

and Bray 1987; Yoshimatsu et al. 1993). To assess the affects of PACAP on indices of 

energy expenditure and glucose homeostasis within the hypothalamus we did site-specific 

PACAP injections into the PVN and VMN similar to the feeding experiments (see 

Chapter 2 and 3). In these studies, we assessed the responses of temperature, locomotor 

activity, blood glucose, and pancreatic hormones following central PACAP injections. 
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Materials and Methods 

Animals 

Male Sprague-Dawley rats (Harlan; Madison, WI) weighing 225-250 g were 

individually housed in a climate controlled room with a 12 hr light/dark cycle. Animals 

had free access to Harlan standard diet (8604 formulation) and water. Food consumption 

was calculated by pre-weighing food in each bin and subtracting the weight of non-

ingested and spilled food at the end of each measurement period. All procedures using 

animals were approved by the Marquette University Institutional Animal Care and Use 

Committee. 

Surgery   

Animals were anesthetized with a ketamine/xylazine/acepromazine (77:1.5:1.5 

mg/ml/kg; ip) cocktail and placed in a stereotaxic apparatus. 26 gauge bilateral guide 

cannulae (Plastics One; Roanoke VA) were placed 3 mm dorsal to the target site in all 

animals, and secured to the surface of the skull with an acrylic resin. The stereotaxic 

coordinates for the PVN injection site were anterior/posterior, -1.7 mm from bregma; 

medial/lateral, ±0.5 mm from midline; dorsal/ventral, -4.9 mm, and for the VMN 

anterior/posterior, -2.5 mm from bregma; medial/lateral, ±0.6 mm from midline; 

dorsal/ventral, -6.2 mm from surface of the skull based on The Rat Brain in Stereotaxic 

Coordinates, 6th Edition (Paxinos and Watson 2007). Injectors extended 3 mm past the 

ventral tip of the cannulae reaching an injection site of -7.9 mm for PVN and -9.2 mm for 

VMN ventral from the surface of the skull. The upper incisor bar was positioned -3.3 mm 

below horizontal zero. A bilateral dummy stylet placed in the guide cannulae was used to 
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maintain patency. The animals were given at least five days to recover after cannula 

installation before receiving drug or vehicle injections during which time the animals 

were handled and dummy stylets were removed and replaced daily in order to acclimate 

the animals to the physical handling necessary during experiments. Correct cannulae 

placements were confirmed at the conclusion of each experiment by microscopic 

examination of Nissl stained sections and only those with correct placement were 

included in the studies. 

Microinjections and Injection Spread 

 In all experiments, PACAP  (50 pmol/0.25 µl/side; PACAP38; California Peptide 

Research; Napa, CA), VIP (50 pmol/0.25 µl/side; California Peptide Research; Napa, 

CA), maxadilan (50 pmol/0.25 µl/side; a generous gift from Dr. Ethan Lerner), PACAP6-

38 (500 pmol/0.25 µl/side; Anaspec; Fremont, CA), or saline vehicle was microinjected 

through bilateral guide cannulae over approximately two minutes in awake animals while 

gently restrained. Following each injection an additional minute elapsed before removing 

injectors to minimize backflow of injected material. The optimal injection volume and 

subsequent spread within the PVN and VMN was determined previously (Resch et al. 

2011; Resch et al. 2013).    

Thermogenesis and activity  

At the time of cannulation surgery animals were also implanted intraperitoneally 

with telemetry probes (Mini-Mitter Inc.; Sunriver, OR). Animals were allowed to recover 

for five days before initiation of experiments. For telemetry experiments, rats received 

bilateral VMN injections of vehicle or 50 pmol PACAP during the light cycle, when 
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temperature and activity are at their circadian trough, and placed back into their home 

cages positioned over a telemetry receiver platform. Telemetric data for core body 

temperature and spontaneous locomotor activity were collected every 5 minutes. Core 

body temperature data were averaged by the hour, and spontaneous locomotor activity 

data was either summed into one-hour bins or summed to give cumulative activity over a 

specified amount of time. 

Isolation of Total RNA and Quantitative PCR 

Total RNA was isolated from interscapular brown adipose tissue (iBAT) by 

TRIzol extraction (Invitrogen; Carlsbad, CA). Subsequently, cDNA was constructed with 

1 µg of total RNA using the Reverse Transcription System (Promega; Madison, WI). 

Quantitative PCR was performed using a StepOne Real-Time PCR System (Applied 

Biosystems; Carlsbad, CA), and PerfeCTa SYBR Green FastMix with ROX (Quanta 

Biosciences; Gaithersberg, MD) according to the manufacturer’s protocol. Quantification 

of UCP1 expression was done using a relative standard curve and normalized to the 

housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH).  Primers for 

each gene were designed to span an exon-exon junction and had efficiencies of approximately 

95%. Product sizes for each primer set were 126 bp for UCP1 and 126 bp for GAPDH. Melt 

curve analysis of experiments confirmed a single product for each reaction. Primers for UCP1 

were 5’-GGTCAGAATGCAAGCACAAA-3’ and 5’-TTAGGAGTCGTCCCTTTCCA-

3’, and primers for GAPDH were 5’-CTCCCATTCTTCCACCTTTGA-3’ and 5’-

ATGTAGGCCATGAGGTCCAC-3’.  
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Glucose, pancreatic hormone, and BAT triglyceride measurements 

 Blood was collected via tail vein before and after injections of saline or PACAP 

into the PVN or VMN in tubes containing EDTA, and then immediately chilled on ice 

until centrifugation. Plasma was then collected and stored at -20°C until analyzed. 

Glucose measurements were performed via a glucose oxidase colorimetric assay (Sigma-

Aldrich; St. Louis, MO). Insulin and glucagon levels were measured by 

radioimmunoassay (Millipore; Billerica, MA). For triglyceride measurements, 

interscapular brown adipose tissue (BAT) was harvested three hours after PACAP 

injections into the VMN and snap frozen in liquid nitrogen. BAT was homogenized in 

radioimmunoassay buffer (Boston BioProducts Inc; Ashland, MA) containing protease 

inhibitor cocktail (Roche; Indianapolis, IN). Triglyceride content of BAT was measured 

using a colorimetric assay (Sigma-Aldrich; St. Louis, MO) and normalized to protein 

concentration using the DC protein assay (Bio-Rad; Hercules, CA). 

Statistics 

Data are presented as means ± standard errors of the mean, and were analyzed 

statistically by analysis of variance (with repeated measures when appropriate). Fischer 

LSD analysis was used for all post-hoc group comparisons. Statistical analyses were 

performed using Sigma Plot 11 software (Systat Software Inc.; San Jose, CA). P < 0.05 

were considered statistically significant. 
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Results 

Glucose and pancreatic hormones  

 Both the PVN and VMN are hypothalamic regions known to regulate peripheral 

glucose as well as feeding behavior (Choi and Dallman 1999; Kalsbeek et al. 2004; 

Tokunaga et al. 1986; Tong et al. 2007). Similarly, central PACAP has been implicated in 

glucose homeostasis (Yi et al. 2010). The effect of PACAP infusion into the PVN or 

VMN on plasma glucose was assessed in animals fasted overnight (Table 4.1). PACAP 

administration in both the PVN and VMN produced significant increases in plasma 

glucose concentrations one hour post-injections (PVN, P < 0.05; VMN, P < 0.05). 

Next, in non-fasted animals, we analyzed insulin and glucagon levels to assess the effects 

of PACAP on pancreatic hormone secretion. Neither PVN nor VMN injections of 

PACAP significantly altered pancreatic hormone levels, although insulin did show a 

trend to decrease with PACAP injections into the VMN (P = 0.11).  

 

 
 

 

 

Table 4.1. Change in levels of glucose and pancreatic hormones 60 minutes following PACAP 

treatment 

 PVN VMN 

    Saline PACAP Saline PACAP 
Glucose ∆ (fasted; mg/dl)      19.1 ±  2.2      29.8 ± 4.5*        9.2 ±  2.5      17.5 ± 2.0* 
Insulin ∆ (ng/ml)      0.03 ±  0.18     -0.06 ±  0.13     -0.01 ±  0.21     -0.55 ±   0.18 
Glucagon ∆ (pg/ml)       -6.6 ±  6.2        5.5 ±  6.5       -2.9 ±  4.2     -13.2 ±   13.1 
Data are mean ± SEM. * = P < 0.05 as compared to appropriate anatomical control 
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Figure 4.1.  VMN injections of PACAP increase 
thermogenesis and activity. (a) Core body temperature and (b) 
spontaneous locomotor activity (averaged into 1 hour bins) 
increase significantly following PACAP injections (50 pmol) 
into the VMN. Data are expressed as mean ± SEM, * = P < 
0.05 compared to vehicle. 
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Thermogenesis and activity 

 We began telemetry experiments first with bilateral infusions of PACAP into the 

VMN. These telemetric experiments were similar to our previous feeding studies except 

they were performed at the onset of the light phase, when core body temperature is at its 

circadian trough. PACAP injections induced increases in core body temperature with 

significant main effects of time and treatment by repeated measures ANOVA (P < 0.01; 

Fig. 4.1A), and the increase in thermogenesis was sustained for up to 7 hours after a 

single injection (P < 0.05). In addition to core body temperature, spontaneous locomotor 

activity was also increased in PACAP treated animals, again showing significant main 

effects of time and treatment by repeated measures ANOVA (P < 0.05; Fig. 4.1B).  

Specifically, activity was significantly increased in PACAP-treated animals from 2-5 

hours following injections (P < 0.05). 

 To gain further insight as to how hypothalamic PACAP signaling impacts energy 

expenditure we expanded our injection sites in order to compare temperature and activity 

responses from animals administered PACAP into the PVN vs. VMN. Surprisingly, 

PACAP infusion into the PVN had no effect on either core body temperature (Fig. 4.2A 

& B) or activity (Fig. 4.2C & D) compared to saline treated controls. By contrast, animals 

that were injected with PACAP into the VMN again displayed marked and long-lasting 

increases in both temperature (Fig. 4.1A & B, P < 0.05) and activity (Fig. 4.2C & D, P < 

0.01) compared to saline-treated controls.  
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 In the VMN, PACAP6-38 significantly attenuated the increased thermogenesis 

produced by PACAP administration alone from 2-5 hours post-injection (Fig 4.3A and B; 

P < 0.05).  A separate cohort of animals was used to assess UCP1 mRNA expression via 

qPCR in iBAT one and three hours following PACAP injection into the VMN. The 

results of the qPCR analysis showed a trend to increase iBAT UCP1 mRNA at one hour 

and a significant increase at three hours post-injection (P < 0.05; Fig 4.3C). Additionally,  

 

 
Figure 4.2.  VMN but not PVN injections of PACAP increase thermogenesis and activity. (A) 
Timecourse of core body temperature and (B) 3 hour temperature change (∆) show a significant 
increase following PACAP injections (50 pmol) into the VMN, however injections into the PVN do 
not affect temperature. (C) Timecourse for cumulative activity and (D) area under the curve (AUC) 
analysis depict a similar significant increase only in animals receiving injections of PACAP into the 
VMN. Data are expressed as mean ± SEM, * = P < 0.05 compared to saline. 
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interscapular brown adipose tissue (iBAT) triglyceride content per mg protein at 3 hours 

post-injection into the VMN was significantly decreased (Fig. 4.3C, P < 0.05). Although  

PACAP6-38 only attenuated the effects of PACAP-induced thermogenesis, we used 

agonists for the VPAC and PAC1 receptors, VIP and maxadilan respectively, to confirm 

the specific involvement of PAC1R receptors. As predicted, VIP injections into the VMN 

did not affect body temperature (Fig. 4.3D & 4.3F), whereas the PAC1R-specific agonist, 

maxadilan, produced a large and long-lasting increase in core body temperature (Fig. 

4.3E & 4.3F, P < 0.001) similar to PACAP-induced thermogenesis. 

Figure 4.3.  PACAP-mediated increases in temperature by the VMN are PAC1R-dependent. (A & B) 
The PAC1R antagonist PACAP6-38 (500 pmol/side) attenuates the timecourse and 3 hour temperature 
change (∆) of PACAP-induced thermogenesis (50 pmol/side). (C) Interscapular brown adipose tissue 
(iBAT) UCP1 mRNA and triglyceride (TG) content was analyzed. Quantitative PCR of iBAT UCP1 
mRNA showed a significant increase at three hours following injections of PACAP into the VMN. At 
the same timepoint iBAT TG content was significantly reduced. (D) VMN injections of the VPACR 
agonist VIP (50 pmol/side) did not alter the timecourse of core body temperature, while the PAC1R 
specific agonist maxadilan (50 pmol/side) caused significant increases in the (E) timecourse and (F) 3 
hour temperature change (∆) in core body temperature similar to PACAP injections. Data are expressed 
as mean ± SEM. * = P < 0.05 compared saline group, and # = P < 0.05 compared to PACAP group. 
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 The PAC1 receptor also mediates the increased activity following PACAP 

infusion into the VMN. PACAP6-38 blocked the PACAP-induced increase in 

spontaneous locomotor activity (Fig. 4.4A & B, P < 0.05) unlike the effect on 

temperature, which was only partially inhibited. Further investigation with VIP and 

maxadilan confirmed the increase in locomotor activity induced by PACAP is dependent 

on the PAC1R. VIP did not alter activity compared to controls (Fig. 4.4C & E), while 

maxadilan produced large increases in cumulative activity compared to saline treated 

controls (Fig. 4.4D & E, P < 0.05). 

 

 
Figure 4.4.  PACAP-mediated increases in activity by the VMN are PAC1R-dependent. (A) The 
timecourse of PACAP-induced spontaneous locomotor activity (50 pmol/side) is blocked by the 
PAC1R antagonist, PACAP6-38 (500 pmol/side), shown by (B) area under the curve (AUC) analysis. 
(C) VMN injections of the VPACR agonist VIP (50 pmol/side) did not alter the timecourse of 
activity, while the (D & E) PAC1R specific agonist maxadilan (50 pmol/side) caused significant 
increases in the timecourse of locomotor activity shown by AUC analysis similar to PACAP 
injections. Data are expressed as mean ± SEM. * = P < 0.05 compared saline group. 
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Discussion 

The current study establishes the PVN and VMN as important targets for PACAP 

signaling likely involved in autonomic nervous system regulation of glucose homeostasis 

and metabolism. Following intrahypothalamic PACAP injections, both the PVN and 

VMN produced increases in blood glucose availability without altering insulin and 

glucagon levels one-hour post-injections. Although the physiological relevance is still 

unknown, PACAP has previously been shown to stimulate hepatic glucose production 

through activation of VPAC2 receptor-expressing neurons of the PVN, which regulate 

hepatic sympathetic nerve activity by sending efferent projections to the intermediolateral 

column of the thoracic spinal cord (Yi et al. 2010). Less is known about glucose 

responses emanating from VMN activation by PACAP leaving the mechanism involved 

in driving glucose production unclear, however the VMN have been associated with 

catecholaminergic and glucagon responses to hypoglycemia (Borg et al. 1997; Borg et al. 

1994; Borg et al. 1995).  

Numerous other studies have linked PACAP with autonomic activation including 

those showing PACAP synapsing onto PVN neurons, which are known to control 

autonomic nervous system activity (Das et al. 2007; Grinevich et al. 1997; Legradi et al. 

1998; Yi et al. 2010). Also, icv injection of PACAP in anesthetized rats alters autonomic 

nerve activity (Tanida et al. 2010), some of which can be blocked by the melanocortin 

receptor antagonist SHU9119 (Tanida et al. 2011b), further supporting that PACAP-

mediated effects on energy are at least partially dependent on melanocortin signaling 

(Mounien et al. 2009; Resch et al. 2011). Interestingly, PACAP knockout mice are highly 

thermosensitive and require higher ambient temperatures to survive into adulthood, 
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adding to the evidence that PACAP plays a necessary role in thermoregulation (Adams et 

al. 2008; Gray et al. 2001; Gray et al. 2002).   

Reduction in body weight is consistently found following central PACAP 

injections (Dore et al. 2013; Hawke et al. 2009; Resch et al. 2011), however pair-feeding 

studies suggest that the body weight loss is not entirely due to decreased feeding, but 

rather an increased metabolic rate (Hawke et al. 2009). Here we find that PACAP 

signaling in the VMN augments core body temperature and spontaneous locomotor 

activity, both of which requiring PAC1R signaling. While pretreatment of the VMN with 

the PAC1R antagonist only attenuated the increased thermogenesis and activity produced 

by PACAP it is likely that a higher dose of PACAP6-38 would fully inhibit these effects, 

as injections of the specific PAC1R agonist maxadilan in the VMN produced the same 

pattern of behaviors demonstrated by PACAP administration, while VIP injections had 

no effect on either temperature or activity. By contrast, stimulation of the PVN by 

PACAP did not significantly alter these measures of energy expenditure, despite evidence 

of PVN regulation of sympathetic outflow to BAT (Amir 1990b; Oldfield et al. 2002), 

and its control over the sympathetically driven PACAP-induced glycemic response (Yi et 

al. 2010). However, these results are in agreement with reports that populations of PVN 

neurons inhibit sympathetic activity to BAT (Kong et al. 2012; Madden and Morrison 

2009).  

Sympathetic thermogenesis independent of physical activity or shivering behavior 

can be positively correlated with UCP1 content in BAT (Himms-Hagen 1990). At one 

hour following PACAP administration into the VMN, increases in iBAT UCP1 mRNA 

expression did not reach statistical significance (data not shown), but by 3 hours the 
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increase in UCP1 mRNA was significant. Furthermore, VMN injected animals exhibiting 

increased thermogenesis and activity also displayed decreased BAT triglyceride stores, 

which is consistent with increased sympathetic nerve activation and lipolysis but not 

pyrogenic action (Cannon and Nedergaard 2004; Okamatsu-Ogura et al. 2007). While 

transynaptic retrograde tracing studies from the interscapular brown adipose tissue often 

fail to detect VMN neurons (Bamshad et al. 1999; Oldfield et al. 2002), there is ample 

evidence supporting VMN activation of BAT thermogenesis, including both VMN-

specific microinjection and genetic studies (Amir 1990a; Kim et al. 2011; Perkins et al. 

1981). It is feasible that the VMN exerts its influences over hypothalamic structures that 

are labeled by transynaptic tracers from BAT such as the medial preoptic area, 

dorsomedial nuclei, or lateral hypothalamus (Oldfield et al. 2002; Zhang et al. 2011) 

allowing for indirect and downstream effects on BAT thermogenesis that are not 

observed in more proximal polysynaptic tracing experiments. Future studies are needed 

to reconcile the discrepancy between the anatomical and functional studies regarding 

VMN-mediated BAT thermogenesis.  

The elevation of spontaneous locomotor activity observed after PACAP injections 

into the VMN is in contrast to previous reports of ventricular injections in mice where no 

increases in activity were noted (Hawke et al. 2009), however increased activity has been 

observed in rats (Masuo et al. 1995). This may reflect that direct or specific stimulation 

of the VMN is necessary to alter locomotor circuits, similar to reports showing that direct 

injection of GABAA receptor antagonists or kainate into the VMN produces running 

activity (Narita et al. 1993; Yokawa et al. 1989). Moreover, VMN lesion studies have 

consistently demonstrated diminished locomotor activity and delayed onset of normal 
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diurnal running activity. Such evidence is congruous with the current study and 

contributes to the notion that locomotor activity pathways involve the VMN (Challet et 

al. 1995; Challet et al. 1996; Choi et al. 1998). 

PACAP neurocircuitry mediating energy homeostasis is not well defined, 

however the present results suggest at least partially distinct circuits of PACAP 

innervation between the PVN and VMN. Analysis of PACAP expression suggests several 

strong candidate brain regions that may provide afferent input of PACAP into the 

hypothalamic regions under study including the medial amygdala and perhaps the VMN 

itself (Hannibal 2002; Nishizuka and Pfaff 1989). Future directions should address this 

gap in knowledge through functional mapping studies of PACAP-expressing PVN and 

VMN circuits, and by overlaying this information in terms of the role of PACAP in the 

regulation of feeding and metabolism.  
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CHAPTER V 
 
 

HYPOTHALAMIC AFFERENTS EXPRESSING PACAP: POTENTIAL CIRCUITS 
MODULATING FEEDING BEHAVIOR AND METABOLISM 

 
 

Introduction 
 
 
 The hypothalamus contains the highest concentration of PACAP protein 

expression within the brain (Hannibal et al. 1995a). Given the high expression of PACAP 

and its receptors in the hypothalamus, it's signaling is likely vital to normal hypothalamic 

function. This is supported by the large deficits in temperature regulation and glycemic 

control exhibited by PACAP knockout mice (Adams et al. 2008; Gray et al. 2001; Gray 

et al. 2002; Hamelink et al. 2002; Tomimoto et al. 2008), and the robust changes in food 

intake and energy expenditure observed following central injections of PACAP (Chance 

et al. 1995; Hawke et al. 2009; Morley et al. 1992; Mounien et al. 2009; Resch et al. 

2011; Resch et al. 2013). Remarkably, the hypothalamic neurocircuitry regulating 

feeding and metabolism through PACAP signaling has not been characterized.  

 Many hypothalamic nuclei contain some expression of PACAP mRNA, but the 

majority of PACAP-expressing neurons reside within the VMN and mammillary bodies 

(Hannibal 2002). Importantly, fasting causes a decrease in hypothalamic PACAP mRNA 

expression indicating a relationship between feeding behavior and PACAP signaling 

(Mounien et al. 2009). Moreover, decreased PACAP mRNA expression following fasting 

is specifically found in the VMN, and by contrast, mice chronically fed a high energy diet 

display increased expression (Hawke et al. 2009). Yet, the efferent targets of 
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hypothalamic PACAP neurons, specifically emanating from the VMN, that are 

potentially responsible for body weight regulation, are not known.  

 In addition to intrahypothalamic sites of PACAP mRNA expression, there are 

several extrahypothalamic regions that express PACAP and have a role in maintaining 

energy homeostasis, including the amygdala and areas of the brainstem (Hannibal 2002). 

Both the amygdala and brainstem possess heavy bidirectional connectivity with the 

hypothalamus, and are critical for regulation of many homeostatic systems including 

feeding, temperature, glucose, and stress regulation (Hammack et al. 2010; King 2006a; 

Kong et al. 2012; Ulrich-Lai et al. 2011; Wu et al. 2009; Zhou et al. 2010; Ziegler et al. 

2012). 

 The PVN and VMN were previously shown to decrease food intake, while 

increasing peripheral glucose levels in response to PACAP injections. Furthermore, 

PACAP signaling specifically in the VMN causes augmented thermogenesis and activity 

(Resch et al. 2013). In order to initiate the functional mapping of PACAP circuits in the 

hypothalamus that drive these behaviors we performed retrograde neuronal tract tracing 

from the PVN and VMN to examine PACAP-expressing circuits that project to these 

regions of the hypothalamus. Retrograde signal from the PVN or VMN was then co-

labeled with PACAP mRNA signal using fluorescent in situ hybridization to define 

afferent circuits expressing PACAP that may control feeding behavior and metabolism. 
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Materials and Methods 

Animals 

Male Sprague-Dawley rats (Harlan; Madison, WI) weighing 225-250 g were 

individually housed in a climate controlled room with a 12 hr light/dark cycle. Animals 

had free access to Harlan standard diet (8604 formulation) and water. All procedures 

using animals were approved by the Marquette University Institutional Animal Care and 

Use Committee. 

Surgery   

Animals were anesthetized with a ketamine/xylazine/acepromazine (77:1.5:1.5 

mg/ml/kg; ip) cocktail and placed in a stereotaxic apparatus. The stereotaxic coordinates 

for the PVN injection site were anterior/posterior, -1.7 mm from bregma; medial/lateral, 

±0.5 mm from midline; dorsal/ventral, -7.9 mm, and for the VMN anterior/posterior, -2.5 

mm from bregma; medial/lateral, ±0.6 mm from midline; dorsal/ventral, -9.2 mm from 

surface of the skull based on The Rat Brain in Stereotaxic Coordinates, 6th Edition 

(Paxinos and Watson 2007). The upper incisor bar was positioned -3.3 mm below 

horizontal zero. Correct injection sites were confirmed by microscopic examination of 

Nissl stained sections and immunohistochemical signal for the retrograde tracer at the 

injection site. Only those with correct placement were included in the analysis. 

In Situ Hybridization 

Brains were sectioned coronally at 12 µm using a cryostat, thaw-mounted onto 

electrostatically clean slides, and stored at -80°C until post-fixed. Prior to hybridization, 
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sections were post-fixed in 4% paraformaldehyde, rinsed in 0.1 M PBS (pH 7.4), 

equilibrated in 0.1 M triethanolamine (pH 8.0), and acetylated in triethanolamine 

containing 0.25% acetic anhydride. Standard in vitro transcription methods were used to 

generate both sense and antisense riboprobes recognizing VGLUT2 (Cullinan; 

Milwaukee, WI) and PACAP transcripts (Choi; Milwaukee, WI), which were 

subsequently diluted in hybridization cocktail (Amresco; Solon, OH) with tRNA. 

Sections were hybridized overnight at 55°C with either digoxigenin (DIG) or fluorescein 

isothiocyanate (FITC) labeled riboprobes.  After hybridization, slides were treated with 

RNase A, and stringently washed in 0.1x SSC at 65°C for 30 minutes. Slides were then 

incubated with an antibody against DIG or FITC conjugated to horseradish peroxidase 

(HRP; Roche; Indianapolis, IN) overnight at 4° C. Riboprobe signal was further 

enhanced using the TSA-plus fluorophore system with either fluorescein or Cy3 (Perkin 

Elmer; Waltham, MA). For dual fluorescent in situ hybridization, following the first 

probe visualization the remaining HRP activity was quenched with 30% H2O2. Following 

the peroxide quench, slides were treated for visualization of the second probe. Image 

capture was performed using fluorescent microscopy (Axioskop-2, Zeiss; Thornwood, 

NY) and Axiovision image analysis software (Zeiss; Thornwood, NY). 

Tract tracing and Immunohistochemistry 

 For PVN and VMN tract tracing experiments, 0.1 µl (PVN) or 0.2 µl (VMN) of 

biotinylated cholera toxin subunit B was stereotaxically microinjected over 10 minutes, 

and injectors were left in place for an additional 5 minutes before removal. 7 days later 

animals were euthanized and brains were collected. Brains were sectioned by cryostat at 

12 µm and prepared for PACAP or VGLUT2 fluorescent in situ hybridization as 
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described above. Following in situ hybridization, slides were then probed with a primary 

antibody against CTB (goat anti-CTB; List Biological Laboratories; Campbell, CA) 

overnight at 4° C, and the antibody signal was visualized using a donkey anti-goat 

Alexafluor 594 conjugated secondary antibody (Life Technologies; Grand Island, NY). 

Upon completion of fluorescent staining, representative sections from regions containing 

both PACAP signal from in situ hybridization and CTB immunolabeling were counted 

for total number of CTB positive cells and the number of CTB positive cells also 

expressing PACAP mRNA. 

 

 

 

 
 
Figure 5.1.  PACAP and Vglut2 mRNA are co-expressed in the VMN. In situ hybridization for PACAP 
(FITC) and Vglut2 (Cy3) mRNA in the dorsal thalamus, habenula (A-C), and ventromedial nuclei of 
the hypothalamus (D-F) shows minimal co-expression in the dorsal thalamic region (C), but extensive 
co-labeling in the ventromedial hypothalamus (F). 3V, third ventricle; ARC, arcuate nuclei; dTHAL, 
dorsal thalamus; mHAB, medial habenula; VMN, ventromedial nuclei. 
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Results  

 To characterize VMN neuron mRNA expression of PACAP and the vesicular 

glutamate transporter 2 (Vglut2) dual fluorescent in situ hybridization was used. Analysis 

of PACAP and Vglut2 expression was done in the dorsal thalamus and VMN. The dorsal 

thalamus was almost completely devoid of PACAP mRNA expression. However, within 

the same habenular area expression of PACAP mRNA was very robust, especially in the 

medial portion (PACAP = green fluorescence; Fig. 5.1A). In contrast, Vglut2 mRNA 

expression was abundant in the dorsal thalamus with little expression in the medial 

habenula, and no cells were observed to express both PACAP and Vglut2 in this region 

(Vglut2 = red fluorescence; Fig. 5.1B & C). Conversely, the VMN contain rich 

expression of both PACAP and Vglut2 mRNA, with almost all PACAP positive 

(PACAP+) neurons co-expressing Vglut2 (~95%; Fig. 5.1D-F). However, there were a 

few PACAP neurons residing in the lateral portions of the arcuate (ARC) that were not 

co-labeled with Vglut2 (Arrow; Fig. 5.1F).  

  

 
 
Figure 5.2.  Cholera toxin subunit B injection site for the PVN. For retrograde labeling of PVN 
afferent circuits the neuronal tracer cholera toxin subunit B (CTB) was injected site-specifically into 
the PVN. Boundaries of PVN are denoted by Vglut2 mRNA signal (green; A), with CTB injection 
signal (red; B) found to be confined within the PVN (C). 
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 PACAP signaling in the hypothalamus drives several behaviors leading to 

reduced body weight, however PACAP-expressing afferent circuits of the PVN and 

VMN are not well defined. We performed tract tracing with the neuronal tracer cholera 

toxin subunit B (CTB), coupled with fluorescent in situ hybridization for PACAP and 

VGLUT2 mRNA (Fig. 5.2 and 5.6). VGLUT2 fluorescent in situ hybridization was used 

as an anatomical marker for both the PVN and VMN. One week following unilateral 

stereotaxic injections of CTB into the PVN and VMN, we examined the distribution of 

both the neuronal tracer and PACAP mRNA. CTB retrograde signal from the PVN (Fig. 

5.3-5.5) co-localized with PACAP mRNA most notably in the anterior medial bed 

nucleus of the stria terminalis (BNST), VMN, and lateral parabrachial nucleus (LPB).  

Figure 5.3.  PACAP-expressing cells of the bed nucleus of the stria terminalis project to the PVN. 
Left column: fluorescent in situ hybridization for PACAP mRNA, middle column: 
immunofluorescence for CTB, and right column: merged images. Approximately 50% of cells 
identified projecting from the bed nucleus of the stria terminalis (BNST) to the PVN were positive 
for PACAP mRNA. Anterior medial BNST at 10X (A, B, C) and 40X (D, E, F). Box within the left 
panels represent the area of subsequent high magnification pictures. Arrows indicate representative 
dual-labeled cells. ac, anterior commissure; BNST, bed nucleus of the stria terminalis; CTB, cholera 
toxin subunit B. 
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Figure 5.4.  PACAP-expressing cells of the VMN project to the PVN. Left column: fluorescent in situ 
hybridization for PACAP mRNA, middle column: immunofluorescence for CTB, and right column: 
merged images.  The majority of cells (~90%) in the VMN that project to the PVN were positive for 
PACAP. VMN at 10X (A, B, C) and 40X (D, E, F). Box within the left panels represent the area of 
subsequent high magnification pictures. Arrows indicate representative dual-labeled cells. 3V, third 
ventricle; CTB, cholera toxin subunit B; VMN, ventromedial nucleus. 
 

Figure 5.5.  PACAP-expressing cells of the lateral parabrachial nuclei project to the PVN. Left 
column: fluorescent in situ hybridization for PACAP mRNA, middle column: immunofluorescence for 
CTB, and right column: merged images.  The majority of cells (~90%) in the lateral parabrachial nuclei 
(LPB) projecting to the PVN were positive for PACAP. LPB at 10X (A, B, C) and 40X (D, E, F).  Box 
within the left panels represent the area of subsequent high magnification pictures. Arrows indicate 
representative dual-labeled cells. CTB, cholera toxin subunit B; LPB, lateral parabrachial nucleus. 
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Few dual labeled cells were also found in the medial amygdala (MeA; data not shown). 

With the exception of the BNST, which had 56% of CTB positive cells co-expressing 

PACAP mRNA, the vast majority of CTB cells in the VMN (95%) and LPB (92%) co-

Figure 5.6.  Cholera toxin subunit B injection site for the VMN. For retrograde labeling of VMN 
afferent circuits the neuronal tracer cholera toxin subunit B (CTB) was injected site-specifically into 
the VMN. Boundaries of VMN are denoted by Vglut2 mRNA signal (green; A), with CTB injection 
signal (red; B) found to be confined within the VMN (C). 
 

Figure 5.7.  PACAP-expressing cells of the medial amygdala project to the VMN. Left column: 
fluorescent in situ hybridization for PACAP mRNA, middle column: immunofluorescence for CTB, 
and right column: merged images. The majority of cells projecting to the VMN from the medial 
amygdala (MeA) were positive for PACAP (~85-90%). MeA at 10X (A, B, C) and 40x (D, E, F). Box 
within the left panels represent the area of subsequent high magnification pictures. Arrows indicate 
representative dual-labeled cells. CTB, cholera toxin subunit B; opt, optic tract. 
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expressed PACAP mRNA. Retrograde CTB tracing from the VMN (Fig. 5.7-5.8) was 

abundantly co-localized with PACAP mRNA in the MeA (85%) ipsilateral to the 

injection site, as well as in the LPB (90%).   

 

 
Discussion 

PACAP signaling within the hypothalamus and at downstream extrahypothalamic 

sites is critical for the control of feeding behavior and metabolism. The VMN possess a 

high degree of PACAP mRNA expression (Hannibal 2002), and are comprised of 

predominantly glutamatergic neurons that express Vglut2 (Fu and van den Pol 2008; 

Tong et al. 2007; Ziegler et al. 2002). While PACAP and glutamate have been reported to  

Figure 5.8.  PACAP-expressing cells of the lateral parabrachial nuclei project to the VMN. Left 
column: fluorescent in situ hybridization for PACAP mRNA, middle column: immunofluorescence for 
CTB, and right column: merged images. The majority of cells projecting to the VMN from the lateral 
parabrachial nuclei (LPB) were positive for PACAP (~85-90%). LPB at 10x (A, B, C) and 40X (D, E, 
F). Box within the left panels represent the area of subsequent high magnification pictures. Arrows 
indicate representative dual-labeled cells. CTB, cholera toxin subunit B; LPB, lateral parabrachial 
nucleus. 
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be co-stored within the same cell previously (Engelund et al. 2010; Fahrenkrug and 

Hannibal 2004; Hannibal et al. 2000), we found evidence of co-storage of PACAP and 

glutamate in VMN neurons using Vglut2 as a marker of glutamate releasing neurons (Fig. 

5.1D-F). Importantly, not all PACAP-expressing neurons co-express Vglut2, as there are 

PACAP+ neurons in the lateral portions of the ARC that do not express Vglut2. 

Interestingly, these ARC PACAP neurons may also express POMC and acetylcholine 

(Durr et al. 2007), yet whether these ARC PACAP neurons are still glutamatergic is 

unknown. Moreover, analysis of habenular neurons revealed no co-labeling of PACAP 

and Vglut2 signal. It should be noted, however, that PACAP+ neurons of the habenula are 

also likely glutamatergic but express Vglut1 instead of Vglut2 (Barroso-Chinea et al. 

2007).    

Hypothalamic PACAP mRNA is predominantly expressed in the VMN (Hannibal 

2002; Hawke et al. 2009), suggesting that a prominent source of PACAP release in the 

PVN may originate from the VMN. In fact, much work has been done to characterize 

PACAP-containing afferents of the PVN.  PACAP immunolabeling of synaptic terminals 

(Legradi et al. 1998) and expression of PACAP receptor subtypes have been identified 

within the PVN (Hashimoto et al. 1996; Resch et al. 2013; Sheward et al. 1995; Usdin et 

al. 1994). Furthermore, retrograde tracing from the PVN demonstrates co-labeling of 

neurons with PACAP immunoreactivity (Das et al. 2007), however results using PACAP 

immunohistochemistry are often difficult to interpret since available PACAP antibodies 

typically have low sensitivity and require the use of colchicine and antigen retrieval 

methods to obtain even low numbers of immunoreactive labeling of neuronal cell bodies  
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(Das et al. 2007).  The current study demonstrates that a number of known PVN afferent 

pathways utilize PACAP signaling including an input from the VMN. Taking into 

consideration the similar feeding behavior responses following stimulation of the VMN 

and PVN by PACAP injections (Resch et al. 2013), the established circuitry of  

glutamatergic VMN neurons projecting to the PVN (Ulrich-Lai et al. 2011), and the 

extremely high PACAP mRNA expression found in the VMN (Hannibal 2002), it is not 

surprising that the VMN may contribute functionally important PACAP-expressing 

afferent inputs to the PVN. However, other significant sources of PACAP innervation to 

the PVN were also found in the anterior medial bed nucleus of the stria terminalis 

(BNST), the lateral parabrachial nucleus (LPB), and sparse dual labeling in the medial 

amygdala (MeA) (Figure 5.9). Although PACAP containing cells from the LPB and MeA 

appear to project more extensively to the VMN, the BNST is well characterized to be a 

critical regulator of stress and anxiety with known inputs to the PVN, which could 

suggest a potential role of PACAP-mediated hypophagia during times of stress (Dong 

and Swanson 2006; Hammack et al. 2009; Hammack et al. 2010). 

 In contrast to the PVN, the circuitry of PACAP-containing afferents to the VMN 

are far less studied, with no prior published reports to date.  While the possibility of 

contralateral and intrinsic PACAP signaling within the VMN still exists (Kiss et al. 2011; 

Nishizuka and Pfaff 1989), cholera toxin subunit B retrograde tracing following 

injections into the VMN robustly co-labeled with fluorescent in situ hybridization signal 

for PACAP mRNA in two distinct regions, the MeA and LPB (Figure 5.9). Both brain 

regions have been strongly implicated in energy balance, suggesting that the MeA and 

LPB may be two distinct central pathways that converge on the PVN and VMN to 
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manage both feeding behavior and metabolic systems. Lesions to the MeA produce 

hyperphagia and obesity, especially in female rats (King 2006a). Moreover, the MeA is 

also a glucose-sensing area of the brain that may respond to states of hypoglycemia 

further strengthening a connection with the well-characterized glucostatic role of the 

VMN (Zhou et al. 2010). The LPB also contributes to body weight regulation as 

demonstrated by the loss of GABAergic signaling to the parabrachial nuclei from agouti-

related polypeptide (AGRP) neurons of the arcuate leading to starvation (Wu et al. 2009). 

Given their effect on feeding, the PVN and VMN may be significant efferent targets of 

the LPB whereby, LPB disinhibition could lead to increased excitation of these areas and 

anorexia. Furthermore, the LPB are critical structures in the thermoregulation pathway 

(Nakamura and Morrison 2008; Nakamura and Morrison 2010), thereby positioning the 

VMN as potential downstream targets of LPB signaling that, in turn, could modulate 

thermogenic responses.   

 The differential response to PACAP signaling within the PVN and VMN 

regarding feeding, temperature, and locomotor activity may reflect an anatomical 

divergence segregating the PVN as the predominant sight of action for PACAP-mediated 

hypophagia, while PACAP stimulation of the VMN may primarily serve to stimulate 

energy expenditure. The distinct and widespread population of PACAP receptors in the 

hypothalamus enables functionally diverse signaling by PACAP. Thus, it would be 

intriguing to determine if multiple subtypes of PACAP receptors are expressed on the 

same cell, or more importantly at the same synapse.  
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Figure 5.9.  Sagittal schematic of PACAP-expressing afferent circuits of the paraventricular (PVN) 
and ventromedial (VMN) nuclei. (A) Afferents of the PVN that may regulate energy homeostasis 
through PACAP signaling originate from the bed nucleus of the stria terminalis (BNST), lateral 
parabrachial nuclei (LPBN), and VMN. (B) Afferents of the VMN that potentially regulate energy 
balance through PACAP signaling originate from the LPBN and medial amygdala (MeA). 



95 

CHAPTER VI 
 
 

PACAP MODULATION OF GLUTAMATE: REGULATION OF ASTROCYTIC 
CYSTINE-GLUTAMATE EXCHANGE 

 
 

Introduction 
 
 

The inhibition of feeding behavior in response to PACAP signaling in the 

hypothalamus is mediated by the PAC1 receptor (Hawke et al. 2009; Mounien et al. 

2009; Resch et al. 2013). Because the PAC1 receptor is G protein-coupled, the exact 

mechanism driving excitation of cells in the hypothalamus by PACAP is not clear. Given 

evidence that PACAP receptor activation potentiates glutamate signaling in several brain 

regions (Chen et al. 1999; Cho et al. 2012; Costa et al. 2009; Kopp et al. 2001; 

Macdonald et al. 2005; Martin et al. 1995; Pellegri et al. 1998; Yaka et al. 2003), it is 

probable that PACAP modulates glutamate signaling to increase the excitation of 

hypothalamic neurons. However, glutamate signaling can be enhanced not only by 

conventional means, such as increased presynaptic release and potentiation of 

postsynaptic receptor currents, but also through nonconventional mechanisms including 

decreased synaptic clearance via glutamate transporters or glutamate release from 

astrocytes. Often overlooked, nonconventional modulation of glutamate signaling by 

astrocytes is critical to CNS function, which is especially relevant since astrocytes are 

heavily targeted by PACAP signaling (Figiel and Engele 2000; Magistretti et al. 1998; 

Tatsuno et al. 1991; Tatsuno et al. 1990; Tatsuno et al. 1996a; Tatsuno et al. 1996b). 

Identifying novel aspects of glutamate modulation by PACAP will be valuable towards 
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understanding more complex aspects of PACAP signaling that affect physiology and 

behavior.   

In the central nervous system (CNS) astrocytic cystine-glutamate exchange is 

critical for both protection against reactive oxygen species (ROS) (Kranich et al. 1998; 

Sagara et al. 1993b), as well as the maintenance of extracellular glutamate concentrations 

(Baker et al. 2002; Moran et al. 2005; Murphy and Baraban 1990). The cystine-glutamate 

antiporter, system xc
-, composed of the light chain xCT and heavy chain 4F2hc subunits, 

is a sodium independent amino acid transporter that exchanges one molecule of 

extracellular cystine for one molecule of intracellular glutamate (Bannai 1986; Bannai 

and Kitamura 1980; Sato et al. 1999). System xc
- is the principal mode of cystine entry 

into the cell (Sagara et al. 1993a), which is immediately reduced to cysteine, the rate-

limiting substrate for glutathione (GSH) production (Sagara et al. 1993b). Maintaining 

sufficient levels of GSH is paramount to the cellular defense against oxidative stress, 

which is thought to significantly impact the development of several disease states 

including cancer, diabetes, and numerous neurodegenerative diseases (Bridges et al. 

2012; Lewerenz et al. 2013).  

Nonvesicular extrasynaptic glutamate release by system xc
- may be important for 

activation of extrasynaptic NMDA and group II/III metabotropic glutamate receptors 

that, in turn, affect neuronal excitability (Kupchik et al. 2012; Moran et al. 2005; Pow 

2001).  In support, nonvesicular glutamate released by the cystine-glutamate antiporter is 

reported to be an essential regulator of extrasynaptic glutamate concentrations in the CNS 

(Baker et al. 2002).  Moreover, dysregulation of extrasynaptic glutamate concentrations 

resulting from altered system xc
- activity has been implicated in glutamate excitotoxicity 
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(Piani and Fontana 1994) and psychiatric disorders (Baker et al. 2008; Baker et al. 2003). 

With the large array of pathological states in the CNS stemming from both insufficient 

glutathione synthesis and dysfunctional glutamate homeostasis, system xc
- is positioned 

to heavily influence a variety of pathologies ranging from compulsive disorders to 

neurodegenerative disease (Berman et al. 2011; de Groot and Sontheimer 2011; Grant et 

al. 2007; Grant et al. 2009; Knackstedt et al. 2009; Park et al. 2004; Sontheimer 2011; 

Zhou and Kalivas 2008). Unfortunately, the regulation of this heterodimeric amino acid 

transporter is poorly understood.  

PACAP is a pleiotropic neuropeptide with widespread expression throughout the 

central nervous system (CNS) and periphery (Vaudry et al. 2009). PACAP regulates 

multiple aspects of astrocyte signaling (Magistretti et al. 1998; Masmoudi-Kouki et al. 

2007; Tatsuno et al. 1991; Tatsuno et al. 1996a; Watanabe et al. 2006) including 

transcriptional activation of the glial glutamate transporters GLT-1 and GLAST (Figiel 

and Engele 2000). Three receptors have been identified for this peptide including the VIP 

receptors VPAC1 and VPAC2, and PAC1R, which PACAP binds to with the highest 

affinity (Dickson and Finlayson 2009). All of the PACAP receptors are expressed on 

astrocytes to some degree (Ashur-Fabian et al. 1997; Grimaldi and Cavallaro 1999; 

Grimaldi and Cavallaro 2000; Masmoudi-Kouki et al. 2007; Suzuki et al. 2003; Tatsuno 

et al. 1991) suggesting a significant role for PACAP signaling in the regulation of 

astrocyte function. Moreover, PACAP synthesis and transmission may be exclusively 

released from glutamate neurons in the CNS (Engelund et al. 2010; Fahrenkrug and 

Hannibal 2004; Hannibal et al. 2000) allowing PACAP to have a potential modulatory 

role on glutamate signaling at both the neuron as well as on the surrounding glia.  
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While PACAP appears to be a critical signal for astrocytes (Masmoudi-Kouki et 

al. 2007), as well as a key modulator of glutamate signaling (Magistretti et al. 1998), the 

affects of PACAP signaling on system xc
- function are unknown. However, evidence of 

the neuroprotective actions of PACAP under conditions of both oxidative stress and 

excitotoxicity (Masmoudi-Kouki et al. 2011; Morio et al. 1996; Shintani et al. 2005) 

suggests these effects could be mediated through activation of system xc
-, a mechanism 

that alters both GSH production and glutamate signaling. To test this hypothesis, we 

treated primary cortical cultures with PACAP and found a potentiation of system xc
- 

activity. Subsequent experiments were performed to determine the specific mechanism 

mediating the increased cystine-glutamate exchange produced by PACAP application in 

these cultures. 

Materials and Methods 

Materials 

 Timed pregnant female Swiss Webster mice (Charles River Laboratories; 

Wilmington, DE) were housed in a climate controlled room with a 12 hr light/dark cycle. 

Animals had free access to standard diet (Harlan 8604 formulation) and water until 

preparation of cell cultures. All procedures using animals were approved by the 

Marquette University Institutional Animal Care and Use Committee. PACAP was 

obtained from California Peptide Research (Napa, CA), PACAP6-38 from Anaspec 

(Fremont, CA), and VIP, VIP6-28, PG 97-269, PG 99-465 from Bachem (Torrance, CA). 

(S)-4-carboxyphenyglycine (CPG) was purchased from Tocris Bioscience (R&D 
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Systems; Minneapolis, MN), and H89 from Sigma (St. Louis, MO). All other common 

chemicals were purchased from Sigma (St. Louis, MO). 

Cortical cell cultures   

Primary mixed cortical cultures containing both neurons and glia were prepared 

from embryonic day 15-16 mouse pups as previously described (Lobner 2000). 

Dissociated cortical cells suspended in Eagles’ Minimal Essential Medium (MEM, 

Earle’s salts, supplied glutamine-free) supplemented with 5% heat-inactivated horse 

serum (Atlanta Biologicals; Lawrenceville, GA), 5% fetal bovine serum (Atlanta 

Biologicals), 2 mM glutamine and glucose (total 21 mM) were plated on 24-well plates 

coated with poly-D-lysine and laminin. Neuronal-enriched cultures were prepared in an 

identical manner with the addition of 10 µM cytosine arabinoside 48 hours after plating 

cultures in order to inhibit glial replication. Neuronal-enriched cultures using this method 

have astrocyte levels of <1% of the total cell population (Dugan et al. 1995; Rush et al. 

2010). Astrocyte-enriched cultures were prepared using a similar protocol to that of the 

mixed cortical culture, however cortices were obtained from postnatal day 1-3 mouse 

pups (Choi et al. 1987; Rush et al. 2010; Schwartz and Wilson 1992). To obtain 

microglial cultures, microglia were collected after shaking astrocyte-enriched cultures 

and then plated in media containing 10 ng/ml colony stimulating factor (CSF) (Barger 

and Basile 2001). All cultures were maintained in humidified 5% CO2 incubators at 

37°C. 
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Radiolabeled cystine uptake 

 Radiolabeled cystine uptake was measured as previously described (Liu et al. 

2012b). Briefly, prior to treatment on in vitro day 15, cultures were washed in serum-free 

media and incubated for a specified period with or without drug.  Following incubation, 

cultures were then washed with HEPES buffered saline solution and immediately 

exposed to 0.3 µM 14C-cystine (Perkin Elmer; Waltham, MA) for 20 minutes. Following 

14C-cystine exposure the cultures were washed with HEPES buffered saline solution and 

dissolved in 250 µl of 0.1% sodium dodecyl sulfate. Of the 250 µl sample, 200 µl were 

used for scintillation counting, with the remaining sample used for protein quantification 

using the Bio-Rad DC protein assay (Hercules, CA). Counts were normalized to 14C-

cystine uptake in controls on the same experimental plate. To inhibit system xc
- activity, 

200 µM CPG was added to the 14C-cystine solution during the uptake experiment. 

Quantitative reverse transcription PCR 

 Cultures used for qRT-PCR were treated identically to those used for radiolabeled 

cystine uptake assays.  However, following drug incubation, cells were harvested for total 

RNA extraction using TRiZOL (Life Technologies; Grand Island, NY). Single-stranded 

cDNA synthesis was performed with 1 µg total RNA using the Promega Reverse 

Transcription System (Madison, WI). Real-time quantitative PCR was performed with 

the StepOne real-time PCR system (Applied Biosystems; Carlsbad, CA) using PerfeCTa 

SYBR Green FastMix containing ROX (Quanta Biosciences; Gaithersberg, MD). 

Relative quantification of xCT transcripts was analyzed via the ∆∆Ct method normalized 

to glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Primers for each gene were 

designed to span an exon-exon junction and had efficiencies of approximately 95%. Product sizes 
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for each primer set were 88 bp for xCT and 116 bp for GAPDH. Melt curve analysis of 

experiments confirmed a single product for each reaction. Primer sequences were as follows: 

xCT forward – AGG GCA TAC TCC AGA ACA CG; xCT reverse – GAC AGG GCT 

CCA AAA AGT GA; GAPDH forward – AAG GGC TCA TGA CCA CAG TC; and 

GAPDH reverse – GGA TGC AGG GAT GAT GTT CT.  

Statistics 

Data are presented as means ± standard errors of the mean, and were analyzed 

statistically by analysis of variance. Fischer LSD analysis was used for all post-hoc group 

comparisons. Statistical analyses were performed using Sigma Plot 11 software (Systat 

Software Inc.; San Jose, CA). P < 0.05 were considered statistically significant. 

 

 

 

Figure 6.1.  PACAP increases cystine uptake through system xc
- in a dose-dependent manner. (A) Dose 

response of 24-hour PACAP treatment on primary mixed cortical cultures on radio-labeled cystine 
uptake. (B) Inhibition of system xc

- with (S)-4-carboxyphenylglycine (CPG; 200 µM) blocks cystine 
uptake in both control and PACAP (1 nM) treated primary mixed cortical cultures. Data are expressed 
as mean ± SEM. * = P < 0.05 compared to control group. 
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Results 

 The effect of PACAP on radiolabeled cystine uptake was initially tested in 

primary mixed cortical cultures using doses ranging from 0.01 and 10 nM PACAP.  By 

24 hours post-treatment, 1 nM PACAP showed a significant increase in radiolabeled 

cystine uptake (Fig. 6.1A; P < 0.01). Consequently, we used the 1 nM dose of PACAP 

for all future experiments examining cystine uptake following PACAP treatment. To 

determine whether the increased cystine uptake induced by PACAP was attributed to 

system xc
- activity, we applied the system xc

- inhibitor CPG (200 µM) during uptake 

experiments. CPG inhibited approximately 90% of radiolabeled cystine uptake in control 

cells as well as the increase in system xc
- activity following 24-hour PACAP treatment 

(Fig. 6.1B). 

 

  

Figure 6.2.  Time course of cystine uptake and quantitative PCR for xCT mRNA expression 
following PACAP treatment. (A) A time course revealed a delayed effect of PACAP (1nM) on 
cystine uptake in primary mixed cortical cultures. PACAP treatment for 6, 12, and 24 hours yielded 
significant increases in radiolabeled cystine uptake. (B) Quantitative PCR from RNA isolated from 
control and 24-hour PACAP (1 nM) treated primary mixed cortical cultures. Data are expressed as 
mean ± SEM. * = P < 0.05 compared to control group. 
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 Subsequently, mixed cortical cultures were incubated with 1 nM PACAP for 1, 3, 

6, 12, and 24 hours prior to the radiolabeled cystine uptake assay to determine the 

optimal incubation period for PACAP treatment needed to augment system xc
- activity. 

PACAP treatment produced significant increases in cystine uptake following incubation 

times ranging from 6-24 hours (Fig 6.2A; P < 0.05). The necessity for long-term 

treatment with PACAP to significantly increase cystine uptake in primary mixed cortical 

cultures suggests that PACAP may be involved with the transcriptional regulation of the 

cystine-glutamate antiporter. Using quantitative real-time PCR (qPCR) we measured 

mRNA expression of the unique functional subunit of system xc
-, xCT. Relative 

quantification for xCT mRNA was performed on total RNA extracted from control or 24-

hour PACAP treated primary mixed cortical cultures normalized to the housekeeping 

 
Figure 6.3.  PACAP increases cystine uptake via a PKA-
dependent pathway. 10 µM of the PKA inhibitor H89 
completely blocked increases in cystine uptake induced by 
24-hour PACAP (1 nM) treatment in primary mixed 
cortical cultures. Data are expressed as mean ± SEM. * = P 
< 0.05 compared to control group. 
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gene GAPDH. In primary mixed cortical cultures, 24-hour treatment with PACAP 

produced significantly increased xCT mRNA levels (Fig. 6.2B; P < 0.01).  

 PACAP signaling through its G protein-coupled receptors often utilizes Gαs to 

increase adenylyl cyclase, a process leading to cyclic AMP formation and increased 

activation of protein kinase A (PKA) (Dickson and Finlayson 2009). To determine 

whether the PKA pathway contributed to the augmentation of system xc
- activity, mixed 

cortical cultures were treated with 10 µM H89 (Figiel and Engele 2000), a PKA inhibitor, 

during 24-hour PACAP treatment. Inhibition of PKA activity by H89 completely blocked 

the increase in radiolabeled cystine uptake induced by 24-hour PACAP treatment  (Fig. 

6.3).  

To identify the PACAP receptor type mediating the effects on cystine-glutamate 

exchange, cortical cultures were co-incubated with antagonists for the PAC1 receptor and 

VPAC receptors. Inhibition of the PAC1R with 100 nM PACAP6-38 did not block 

PACAP facilitated radiolabeled cystine uptake, but instead potentiated the effects of 

PACAP treatment alone (Fig 6.4A; P < 0.05 compared to PACAP treatment). The 

nonspecific VPAC receptor antagonist VIP6-28 at a dose of 100 nM was effective in 

attenuating the increased cystine uptake following 24 hour 1 nM PACAP treatment (Fig. 

6.4B). To further investigate which VPAC receptors were involved in the augmentation 

of system xc
- activity, primary mixed cortical cultures were pre-treated with specific 

antagonists for VPAC1R and VPAC2R. A 100 nM concentration of the VPAC1R 

antagonist PG 97-269 blocked the increased cystine uptake produced by 24 hour PACAP 

(1 nM) treatment in mixed cortical cells (Fig. 6.4C), while similar treatment with the 

VPAC2R antagonist PG 99-465 had no effect (Fig. 6.4D). Finally, a dose response using  
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Figure 6.4.  Increases in cystine uptake induced by PACAP are mediated by VPAC1 receptors. (A) 
The PAC1R antagonist PACAP6-38 (100 nM) caused a potentiation of 1 nM PACAP on cystine 
uptake. (B) The VIP receptor antagonist VIP6-28 (100 nM) significantly attenuated the increased 
cystine uptake caused by PACAP treatment. (C) Treatment with 100 nM PG 97-269 (specific 
VPAC1R antagonist) abolished the 1 nM PACAP effect on cystine uptake, while (D) 100 nM PG 
99-465 (VPAC2R antagonist) had no effect. (E) A dose response of 24-hour VIP treatment showed 
that VIP increases cystine uptake at a similar dose to PACAP, as well as at the higher dose ranges 
where PACAP was ineffective. Data are expressed as mean ± SEM. * = P < 0.05 compared to 
control group. # = P < 0.05 compared to PACAP group. 
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VIP concentrations ranging from 1, 10, and 100 nM also produced significant increases 

in radiolabeled cystine uptake (Fig. 6.4E; P < 0.05). 

To isolate which cell type in a mixed cortical preparation primarily contributed to 

the increased radiolabeled cystine uptake following incubation with PACAP or VIP, we 

applied similar measures to neuronal, astrocyte, and microglia-enriched cultures. Optimal 

concentrations determined from previous dose response experiments in mixed cortical 

cultures resulted in the use of 1 nM PACAP (Fig. 6.1A) and 10 nM VIP (Fig. 6.4E) 

doses. Incubation with either PACAP or VIP produced significant increases in 

radiolabeled cystine uptake in astrocyte-enriched cultures only (Fig. 6.5B; P < 0.01), with 

no changes detected in neuronal or microglia-enriched cultures. 

 

 

Discussion 

 Previous reports have indicated that both neuropeptides and growth factors may 

be potential regulators of the cystine-glutamate antiporter, system xc
- (Johnson and 

Johnson 1993; Liu et al. 2012b). The present study demonstrates that the pleiotropic 

Figure 6.5.  Cell type specific analysis of PACAP and VIP treatment on cystine uptake. (A) Cystine 
uptake was unaffected following PACAP (1 nM) and VIP (10 nM) treatment in neuronally-enriched 
cultures. (B) Both PACAP and VIP significantly increased cystine uptake in astrocyte-enriched 
cultures. (C) There was no affect of PACAP or VIP on microglial cystine uptake. Data are expressed 
as mean ± SEM. * = P < 0.05 compared to control group. 
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neuropeptide PACAP is a novel regulator of system xc
- activity. 24-hour PACAP 

treatment of primary cortical cultures significantly increased radiolabeled cystine uptake.  

Inhibition of cystine uptake following CPG treatment indicated that PACAP facilitated 

cystine uptake was mediated specifically through system xc
-. Furthermore, the increases 

in cystine-glutamate exchange appear to be mediated, in part, by increased transcription 

of the specific light chain subunit of system xc
-, xCT. This induction of cystine-glutamate 

exchange activity appears to be driven primarily via VPAC1R signaling through a PKA-

dependent pathway that appears to be specific to astrocytes in our primary cortical culture 

models.  

 Cell culture models have shown that overexpression of xCT yields increased 

glutathione content and neuroprotection against toxicity induced by glutamate and 

reactive oxygen species (Shih et al. 2006), thus suggesting that signals such as PACAP or 

VIP may achieve their neuroprotective effects via increased expression and activity of the 

cystine-glutamate antiporter. In addition, spontaneous deletion of the xCT gene 

characterized in sut/sut mutant mice results in significant brain atrophy (Shih et al. 2006). 

However, it should be noted that genetically engineered xCT knockout mice do not 

appear to have significant behavioral or morphological deficits (Lewerenz et al. 2013), 

and increased system xc
- activity may produce excitotoxicity under certain circumstances 

such as in primary brain tumors (de Groot and Sontheimer 2011) and interleukin-1β 

mediated hypoxic neuronal injury (Fogal et al. 2007; Jackman et al. 2010). 

Alterations in system xc
- activity and expression have been implicated in various 

disease states such as gliomas, schizophrenia, and drug abuse (Baker et al. 2008; Baker et 

al. 2003; Ye et al. 1999). Oxidative stress and glutamate dysfunction lead to the 
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development of numerous pathologies, demonstrating that system xc
- may be an attractive 

target for drug development. Similarly, the potential therapeutic value of PACAP as a 

neuroprotective drug is high, and others have begun the task of designing drugs targeting 

PACAP and its receptors for the treatment of neurodegenerative disorders (Bourgault et 

al. 2011). Thus, PACAP/VIP signaling on astrocytes may be a critical regulator of 

cystine-glutamate exchange mediating neurotrophic effects in the central nervous system. 

PACAP and VIP are neurotrophic factors that have numerous effects on both 

astrocyte function and glutamate homeostasis (Arimura et al. 1994; Brenneman et al. 

1998; Figiel and Engele 2000; Hannibal et al. 2000; Magistretti et al. 1998; Martin et al. 

1995; Masmoudi-Kouki et al. 2011; Morio et al. 1996; Seaborn et al. 2011; Yuhara et al. 

2001). As an excitatory neuropeptide expressed in glutamatergic neurons, PACAP 

enhances both NMDA and AMPA currents in the hippocampus through PAC1R 

signaling (Costa et al. 2009; Hannibal et al. 2000; Macdonald et al. 2005; Yaka et al. 

2003). Moreover, PACAP ameliorates glutamate toxicity and oxidative stress suggesting 

that its signaling mechanism contributes to multiple aspects of glutamate modulation and 

cell survival. One such mechanism of protection may be the result of enhanced sodium-

dependent glial excitatory amino acid transporter (EAAT) expression following PACAP 

treatment, leading to an increase in synaptic glutamate clearance following high intensity 

neurotransmitter release (Figiel and Engele 2000). In addition, VIP and PACAP also 

regulate astrocytic glycogen metabolism through cAMP-dependent activation of the 

transcription factor CCAAT/enhancer binding protein (Cardinaux and Magistretti 1996; 

Magistretti et al. 1998; Sorg and Magistretti 1991). Thus, increases in cystine-glutamate 

exchange activity is yet another mechanism enabling PACAP/VIP to exert its 
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neuroprotective potential by increasing cystine/cysteine availability for glutathione 

production to decrease free reactive oxygen species, as well as increasing extrasynaptic 

glutamatergic tone on the presynaptic group II/III metabotropic glutamate autoreceptors, 

dampening the potentially harmful excessive synaptic release of neurotransmitter.   

Twenty-four hour treatment of primary mixed cortical cultures with PACAP 

produced a dose-dependent increase in cystine uptake, at an optimal dose of 1 nM, while 

an elevated dose of 10 nM PACAP did not produce any changes in cystine uptake (Fig. 

6.1A). The physiological relevance of prolonged neuropeptide treatment in vitro is still 

somewhat unclear as there is no rapid clearance mechanism for neuropeptides, and 

diffusion is not an applicable process when neuropeptide concentrations are uniform in 

the cell culture media. Furthermore, the slow degradation of neuropeptides by 

aminopeptidases likely result in peptide fragments that are commonly used as 

neuropeptide receptor antagonists in pharmacology experiments. In the case of PACAP, 

PACAP6-38 is likely generated a few hours after application, and the consequences of 

this process may be reflected in some of our data, such as the inverted U-shape curve of 

cystine uptake observed at high doses of PACAP. Additionally, this increase in cystine 

uptake in primary mixed cortical cultures at 1 nM PACAP was relatively modest 

compared to the increases observed in astrocyte-enriched cultures (Fig. 6.5B) suggesting 

that PACAP-mediated regulation of system xc
- is primarily driven by signaling on 

astrocytes, and PACAP stimulation of neurons may evoke other signaling mechanisms 

that inhibit increases in cystine uptake via system xc
-. Interestingly, the PAC1R 

antagonist, PACAP6-38, actually potentiated the effect of 1 nM PACAP treatment in 

mixed cultures on cystine uptake (Fig. 6.4A), perhaps demonstrating a role for neuronal 
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PAC1R activation in reducing cystine-glutamate exchange.  Furthermore, a dose-

response of VIP treatment did not produce the same U-shaped profile for cystine uptake 

in primary mixed cortical cultures as PACAP (Fig. 6.4E), indicating that VIP-neuron 

interactions do not suppress system xc
- activity.  

Surprisingly, the nonspecific VIP receptor antagonist VIP6-28 and the VPAC1R 

antagonist PG 97-269 both blocked PACAP-induced increases in cystine uptake 

suggesting that regulation of system xc
- in mixed cortical cells is achieved through 

VPAC1R signaling and not VPAC2R or the PACAP-specific PAC1R. Importantly, 

primary cortical neurons express PAC1 and VPAC2 receptor subtypes, while primary 

cortical astrocytes express all three receptor subtypes including VPAC1 (Grimaldi and 

Cavallaro 1999). The expression of the VPAC1R is distributed throughout the central 

nervous system, with very high levels of immunoreactivity reported in cortical layers 

(Joo et al. 2004). Since, regulation of feeding behavior by hypothalamic PACAP 

signaling is dependent upon PAC1R and central VIP injections have little effect on food 

intake (Mounien et al. 2009), it appears unlikely that control of feeding behavior by 

PACAP is mediated by system xc
- activity. However, the current studies have not 

addressed the possible rapid regulation of cystine-glutamate exchange by PACAP which 

could significantly affect behavior, and similar in vitro studies using cultured 

hypothalamic cells may be necessary to examine whether the mechanisms of glutamate 

modulation by PACAP receptors is anatomically specific.   
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 The current study identifies a novel neuropeptide signal that regulates the function 

of the cystine-glutamate antiporter (Figure 6.6). PACAP/VIP signaling may critically 

modulate system xc
- activity throughout the central nervous system conveying signals to 

astrocytes of increased activity and oxidative stress at the synapse. Future studies are 

needed to examine the potentially harmful affects of abnormal PACAP/VIP signaling on 

system xc
- function, as well as the therapeutic potential of targeting these neuropeptide 

signals in order to drive system xc
- activity for the treatment of disease. 

 
 
 
 

Figure 6.6. Modulation of astrocytic system xc
- activity by PACAP. PACAP released from 

Glutamate neurons targets astrocytic receptors altering glutamate signaling by regulating EAATs 
and system xc

-. C-C, cystine; mGr, metabotropic glutamate receptor; A, AMPA receptor; N, 
NMDA receptor. 
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CHAPTER VII 
 
 

PACAP MODULATION OF GLUTAMATE: HYPOPHAGIA INDUCED BY PACAP 
IN THE VENTROMEDIAL NUCLEI OF THE HYPOTHALAMUS IS MEDIATED BY 

NMDA RECEPTORS 
 
 

Introduction 
 
 
 Hypothalamic glutamate neurotransmission is crucial to energy regulation 

(Fuente-Martin et al. 2012; Liu et al. 2012a; Sternson et al. 2005; Tong et al. 2007; Xu et 

al. 2013a; Xu et al. 2013b), in part, through the regulation of feeding behavior (Guyenet 

et al. 2013; Stanley et al. 1993a; Takaki et al. 1992). This is in contrast to classical views 

of hypothalamic signaling that have focused on the importance of neuropeptides for 

homeostatic regulation. However, recent investigation into mechanisms of neuropeptide 

function has indicated that modulation of the fast-acting amino acid neurotransmitters, 

glutamate and GABA, in addition to effects on cell morphology and gene expression, 

may be the primary role for neuropeptide signaling (van den Pol 2012). This is 

demonstrated by neuropeptides, such as orexin or neuropeptide Y, that potently increase 

feeding behavior through glutamate receptor-dependent pathways (Doane et al. 2007; Lee 

and Stanley 2005).  

 The hypothalamic ventromedial nuclei (VMN) are critical regulators of body 

weight and possess both high levels of glutamate and all glutamate receptor subtypes (Fu 

and van den Pol 2008; Meeker et al. 1994; Tong et al. 2007; Ziegler et al. 2002). 

Stimulation of these nuclei produces reductions in food intake and increased metabolic 

rate (Amir 1990a; Beltt and Keesey 1975; Ruffin and Nicolaidis 1999; Takaki et al. 1992; 

Yoshimatsu et al. 1993). Likewise, microinjection of PACAP into the VMN also inhibits 
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feeding behavior through activation of PAC1 receptors even after food deprivation 

(Resch et al. 2011), however, the signaling downstream of the PAC1R-expressing 

neurons of the VMN that results in decreased food intake is not clear. Still, previous 

demonstration of synergy between PACAP and glutamate (Hannibal et al. 2000; 

Harrington et al. 1999; Macdonald et al. 2005) suggests that PACAP-PAC1R signaling in 

the VMN may result in augmented glutamate neurotransmission.  

 Co-localization of PACAP and glutamate immunoreactivity in retinal ganglion 

cells, as well as in nerve terminals located in the suprachiasmatic nuclei (SCN) support a 

mechanism of co-release at synapses of the retinohypothalamic tract (Engelund et al. 

2010; Fahrenkrug and Hannibal 2004; Hannibal et al. 2000). Functionally, PACAP 

application to SCN slices produces dose-dependent phase shifts in circadian rhythms 

through modulation of NMDA receptor activity (Harrington et al. 1999). Moreover, 

PACAP enhances NMDA receptor activity in the hippocampus, reportedly by two 

separate mechanisms involving Src tyrosine kinase signaling. The first of which involves 

cAMP/PKA-dependent activation of Fyn, a member of the Src tyrosine kinase family, 

leading to phosphorylation of multiple tyrosine residues on the GluN2B subunit of the 

NMDA receptor (Yaka et al. 2003). The second was shown to occur via PAC1R 

activation of a phospholipase C pathway leading to Src tyrosine kinase activation and 

augmented hippocampal NMDA receptor function (Macdonald et al. 2005). Both 

PACAP-mediated signaling pathways suggest that modulation of NMDA receptors can 

occur through Src kinase activity, which has been implicated in the regulation of feeding 

behavior by lateral hypothalamic neurons (Khan et al. 2004). 
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 Glutamate is also substantially regulated by astrocytes, which are major targets of 

PACAP signaling (Masmoudi-Kouki et al. 2007; Tatsuno et al. 1996a; Tatsuno et al. 

1996b), yielding another potentially important mechanism for glutamate modulation by 

PACAP. Astrocytes impact glutamate neurotransmission most notably through removal 

of synaptic glutamate by sodium-dependent excitatory amino acid transporters (EAATs) 

(Asztely et al. 1997; Diamond and Jahr 2000; Zheng et al. 2008) and glutamate release 

from astrocytes themselves (Baker et al. 2002; Kupchik et al. 2012; Moran et al. 2005; 

Parpura and Haydon 2000; Ye et al. 2003). Given that a single astrocyte can interact with 

numerous synapses (Bushong et al. 2002; Ogata and Kosaka 2002), their influence over 

glutamate signaling and overall network activity is immense. Therefore, investigation 

into how glutamate neurotransmission is influenced by astrocytes may reveal new 

insights into signaling mechanisms that are unique to glutamatergic synapses and the 

manner by which they influence behavior. In terms of PACAP signaling, this 

neuropeptide stimulates expression of both GLAST and GLT-1 (EAAT1 and EAAT2 

respectively) in primary cortical astrocyte cultures (Figiel and Engele 2000) and 

augments cystine-glutamate exchange through increasing system xc
- activity (Resch et al. 

2014 under review), illustrating that separate mechanisms driven by the same 

neuropeptide signal can increases both uptake and release of glutamate by astrocytes. 

Despite the extensive study of how astrocytic control of glutamate affects hypothalamic 

function (Fuente-Martin et al. 2012; Gordon et al. 2009; Oliet et al. 2001; Potapenko et 

al. 2012) and knowledge that PACAP potently regulates feeding behavior (Hawke et al. 

2009; Morley et al. 1992; Mounien et al. 2009; Resch et al. 2013), whether or not 
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modulation of astrocytic glutamate signaling by PACAP influences food intake has yet to 

be investigated. 

 In order to determine whether modulation of glutamate signaling underlies the 

regulation of feeding behavior by PACAP in the hypothalamus we measured food intake 

following administration of pharmacological inhibitors of system xc
- or NMDA receptor 

function within the VMN prior to PACAP injection. Our results suggest that PACAP 

interacts with and possibly potentiates both system xc
- and NMDA receptor activity, 

however only modulation of NMDA receptors significantly altered PACAP-induced 

hypophagia in the VMN.    

Methods 

Animals 

Male Sprague-Dawley rats (Harlan; Madison, WI) weighing 225-250 g were 

individually housed in a climate controlled room with a 12 hr light/dark cycle. Animals 

had free access to Harlan standard diet (8604 formulation) and water. Food consumption 

was measured with a BioDAQ Food Intake Monitor (Research Diets; New Brunswick, 

NJ) or calculated by pre-weighing food in each bin and subtracting the weight of non-

ingested and spilled food at the end of each measurement period. All procedures using 

animals were approved by the Marquette University Institutional Animal Care and Use 

Committee. 
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Surgery   

Animals were anesthetized with a ketamine/xylazine/acepromazine (77:1.5:1.5 

mg/ml/kg; ip) cocktail and placed in a stereotaxic apparatus. Bilateral guide cannulae (26 

gauge; Plastics One; Roanoke VA) were placed 3 mm dorsal to the target site in all 

animals, and secured to the surface of the skull with an acrylic resin. The stereotaxic 

coordinates for the VMN were anterior/posterior, -2.5 mm from bregma; medial/lateral, 

±0.6 mm from midline; dorsal/ventral, -6.2 mm from surface of the skull based on The 

Rat Brain in Stereotaxic Coordinates, 6th Edition (Paxinos and Watson 2007). Injectors 

extended 3 mm past the ventral tip of the cannulae reaching a VMN injection site of -9.2 

mm ventral from the surface of the skull. The upper incisor bar was positioned -3.3 mm 

below horizontal zero. A bilateral dummy stylet placed in the guide cannulae was used to 

maintain patency. All animals were given at least five days to recover after cannula 

installation before receiving drug or vehicle injections, during which time the animals 

were handled and dummy stylets were removed and replaced daily in order to acclimate 

the animals to the physical handling necessary during experiments. Correct cannulae 

placements were confirmed at the conclusion of each experiment by microscopic 

examination of Nissl stained sections and only those with correct placement were 

included in the studies. 

Feeding Behavior Experiments 

Animals were weighed daily and acclimated to the BioDAQ Food Intake Monitor 

for at least 7 days before the onset of the experiment. In all experiments, approximately 1 

hour prior to lights off rats received bilateral microinjections of an antagonist, which 
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included sulfasalazine (SSZ; 10 - 10,000 pmol in 10 % dimethylsulfoxide (DMSO)/0.25 

µl/side; Anaspec; Fremont, CA), (S)-4-carboxyphenylglycine (CPG; 10 - 10,000 pmol in 

saline/0.25 µl/side; Tocris Bioscience; Minneapolis, MN), D-(-)-2-amino-5-

phosphonopentanoic acid (AP5; 10 - 10,000 pmol in saline/0.25 µl/side; Tocris 

Bioscience), 1-(1,1-Dimethylethyl)-1-(4-methylphenyl)-1H-pyrazolo[3,4-d]pyrimidin-4-

amine (PP1; Src kinase inhibitor; 1 - 100 pmol in 10 % DMSO/0.25 µl/side; 1 nmol in 

25% DMSO/0.25 µl/side; Tocris Bioscience), or vehicle alone over approximately two 

minutes in awake animals while gently restrained. When necessary, DMSO was used as a 

vehicle for water insoluble substances such as SSZ and PP1, as it has been previously 

verified to be suitable for such feeding experiments, causing no significant alterations in 

food intake when administered alone, even with solutions at concentrations as high as 

75% (Blevins et al. 2002; Khan et al. 2004). Upon completion of antagonist injections an 

additional minute elapsed before removing injectors to minimize backflow of injected 

material. Five minutes later (15 minutes for PP1 studies) rats received a second bilateral 

injection of either saline or PACAP (50 pmol/0.25 µl/side; PACAP38; California Peptide 

Research; Napa, CA) followed by subsequent feeding measurements. The optimal 

injection volume of 0.25 µl and subsequent spread within the VMN was determined 

previously (Resch et al. 2011). Feeding measurements were collected for the next 24 

hours, with the greatest emphasis placed on the first 3-5 hours after microinjections were 

delivered.  

Quantitative reverse transcription PCR  

Three hours post-injection of saline or PACAP (50 pmol/0.25 µl/side) into the 

VMN, bilateral dissections of the VMH were collected and snap frozen in liquid nitrogen. 
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Total RNA was isolated from VMH punches by TRIzol extraction (Invitrogen; Carlsbad, 

CA). Subsequently, cDNA was constructed with 1 µg of total RNA using the Reverse 

Transcription System (Promega; Madison, WI). Quantitative PCR was performed using a 

StepOne Real-Time PCR System (Applied Biosystems; Carlsbad, CA), and PerfeCTa 

SYBR Green FastMix with ROX (Quanta Biosciences; Gaithersberg, MD) according to 

the manufacturer’s protocol. Quantification of xCT expression was done using the ΔΔCT 

method normalized to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression. 

Primers for each gene were designed to span an exon-exon junction and had efficiencies of 

approximately 95%. Product sizes for each primer set were 112 bp for xCT and 126 bp for 

GAPDH. Melt curve analysis of experiments confirmed a single product for each reaction. 

Primers were as follows: xCT - AGGGCATACTCCAGAACACG and ATGCTCGTACC 

CAATTCAGC; GAPDH - CTCCCATTCTTCCACCTTTGA and 

ATGTAGGCCATGAGGTCCAC.  

Western blot analysis of GluN2B tyrosine phosphorylation   

 Thirty minutes following saline or PACAP (50 pmol/0.25 µl/side) injections into 

the VMN, bilateral dissections of the ventromedial hypothalamus (VMH) were collected. 

VMH tissue was homogenized in ice-cold homogenization buffer (320 mM sucrose, 10 

mM Tris-HCl, pH 7.4, 10mM EDTA, 10mM EGTA) containing Halt protease and 

phosphatase inhibitor cocktail (Pierce; Rockfork, IL) with a Teflon homogenizer (10 

strokes), followed by 3-4 seconds of sonication. Homogenates were centrifuged at 1000 

X g for 2 minutes at 4° C to remove nuclei and large debris. The resulting supernatant 

was further centrifuged at 10,000 X g for 30 minutes at 4° C to obtain a crude membranal 

pellet that was resuspended in solubilization buffer (1% Triton x-100, 150 mM NaCl, 
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10nM Tris-HCl pH 7.4, 1 mM EDTA, 1 mM EGT, protease & phosphatase inhibitor 

cocktail). Protein quantification of samples was determined using a bicinchoninic (BCA) 

assay (Pierce). Membrane protein (20 µg) was run on an 8% gel by SDS-PAGE and 

transferred to a polyvinylidine fluoride (PVDF) membrane. Membranes were blocked 

with 5% bovine serum albumin (BSA) in tris-buffered saline containing 0.1 % Tween-20 

(TBS-T). Blots were then probed with rabbit anti-pY1336 GluN2B antibody (Rockland 

Immunochemicals; Gilbertsville, PA) overnight at 4° C, followed by washes with TBS-T 

and incubation with an HRP-conjugated mouse anti-rabbit secondary antibody (Jackson 

Immunoresearch; West Grove, PA) at room temperature for 2 hours. Band intensities for 

pY1336 were developed using SuperSignal West Femto chemiluminescent substrate 

(Pierce) and visualized using the Kodak Image Station 4000MM. After visualization of 

pY1336 signal, blots were stripped and reprobed in an identical fashion for total GluN2B 

expression using mouse anti-GluN2B (Rockland Immunochemicals) and HRP-

conjugated goat anti-mouse (Jackson Immunoresearch) antibodies. Band densities were 

measured using Kodak Molecular Imaging Software v4.0. 

Radiolabeled cystine uptake from VMN punches 

 Brain punches containing the ventromedial hypothalamus (VMH) which included 

the VMN and other nearby hypothalamic regions were collected using a blunt 16 gauge 

needle and incubated in 95% O2: 5% CO2 slice buffer (118 mM NaCl, 3 mM KCl, 1.4 

mM KH2PO4, 2.7 mM MgSO4, 26 mM NaHCO3, 3.2 mM CaCl2, and 7.8 mM glucose) 

for 20 minutes for acclimation. Punches were then treated with 1 µM 14C-Cystine and 10 

µM TBOA for 20 minutes ±500 µM sulfasalazine (SSZ) or 1 mM S-(4)-

carboxyphenylglycine (CPG). Following radiolabeled cystine incubation punches were 
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washed three times with ice-cold PBS, and dissolved with 1N NaOH. Radioactivity was 

measured using a scintillation counter and normalized for protein content using the Bio-

Rad DC protein assay (Hercules, CA). Data are presented as % radiolabeled cystine 

uptake of control VMH punches. 

Statistics 

Data are presented as means ± standard errors of the mean, and were analyzed 

statistically by analysis of variance (with repeated measures when appropriate). Fischer 

LSD analysis was used for all post-hoc group comparisons. Statistical analyses were 

performed using Sigma Plot 11 software (Systat Software Inc.; San Jose, CA). P < 0.05 

were considered statistically significant. 

Results 

 Prior to determining the affects of cystine-glutamate exchange on feeding 

behavior, we first tested for functional system xc
- activity in the hypothalamus by 

assessing radiolabeled cystine uptake in ventromedial hypothalamus (VMH) punches ex 

vivo. VMH punches were incubated with or without a system xc
- inhibitor, 500 µM 

sulfasalazine (SSZ) or 1 mM 4-(S)-carboxyphenylglycine (CPG), in the presence of 

radiolabeled cystine for 20 minutes. Both SSZ and CPG dramatically reduced 

radiolabeled cystine uptake in VMH punches to approximately 30% of controls (Fig. 

7.1A; P < 0.05). Although PACAP modulates both system xc
- activity and mRNA 

expression in primary cortical cultures (Resch et al. 2014 under review), there are no 

reports of similar mechanisms in the hypothalamus. In order to assess whether PACAP 

signaling affects in vivo system xc
- expression in the hypothalamus we measured  
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radiolabeled cystine uptake in VMH punches treated with PACAP and xCT mRNA three 

hours following microinjections of saline or PACAP into the VMN. PACAP increased 

cystine uptake by approximately 20% above controls, although, it was not a statistically 

significant increase. By contrast, PACAP-treated VMH samples demonstrated a 

significant increase in xCT mRNA compared to saline treatment (Fig. 7.1B; P < 0.05). 

  After confirming system xc
- activity and PACAP-induced stimulation of xCT 

mRNA expression in the VMN, we examined whether impairment of cystine-glutamate 

exchange in the VMN altered feeding behavior using the system xc
- inhibitor 

sulfasalazine (SSZ). No concentration of SSZ (50 pmol, 500 pmol, or 5 nmol/side) 

injected into the VMN injections altered food intake (Fig. 7.2A) nor did SSZ (500  

 
Figure 7.1.  Demonstration of system xc

- activity in the ventromedial hypothalamus and its regulation 
by PACAP. (A) Radiolabeled cystine uptake in ex vivo VMH punches was significantly reduced with 
the system xc

- inhibitors sulfasalazine (SSZ) and 4-(S)-carboxyphenylglycine (CPG). (B) Radiolabeled 
cystine uptake from ex vivo VMH punches treated with 1 nM PACAP was increased compared to 
controls.(C) Quantitative PCR demonstrates that PACAP injections into the VMN result in increased 
xCT mRNA expression 3 hours post-injection. Levels of xCT expression were normalized to GAPDH 
using the ∆∆Ct method. Data are expressed as mean ± SEM. * = P < 0.05 compared to control group. 
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pmol/side) attenuate PACAP-mediated decreases in food intake (Fig. 7.2B). However, to 

be certain that the lack of effects on feeding were not due to the choice of system xc
- 

inhibitor used, we also tested a second cystine-glutamate antiporter inhibitor, CPG, to 

determine whether it would attenuate the effects of PACAP on feeding behavior. 

Multiple doses of CPG (10 pmol - 1 nmol/side) were injected into the VMN prior to 

PACAP administration, however, like SSZ none of the CPG treatments were effective in 

blocking the hypophagic response to PACAP in the VMN (Fig. 7.3).  

 Considering that inhibition of cystine-glutamate antiporter function did not affect 

feeding behavior or attenuate hypophagia induced by PACAP, we proceeded to test 

whether glutamate signaling via the NMDA receptor was necessary for PACAP-mediated 

reductions in food intake. Initially, the NMDA receptor antagonist AP5 was administered 

into the VMN at multiple doses ranging from 10 pmol to 10 nmol to investigate its  

 
Figure 7.2.  Inhibition of the cystine-glutamate antiporter in the VMN with sulfasalazine has no 
effect on food intake. (A) Dose response of SSZ injections into the VMN shows no differences in 
food intake. (B) Bilateral pretreatment with 500 pmol of SSZ into the VMN does not attenuate 
decreased food intake caused by PACAP. Data are expressed as mean ± SEM. * = P < 0.05 
compared to control group. 
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contribution to normal feeding behavior. Surprisingly, only bilateral injections of 10 

nmol AP5 significantly altered feeding behavior by decreasing food intake (Fig. 7.4A; P 

< 0.05). An unexpected result considering inhibition of the VMN produces increased 

feeding behavior (Berthoud and Jeanrenaud 1979), however, administration of AP5 at 

concentrations of 10 nmol/side into the VMN also dramatically reduced locomotor 

activity, which may explain the reduction in food intake (data not shown). To determine 

whether NMDA receptor function is necessary for PACAP-mediated decreased food 

intake animals received AP5 (10 pmol/side) injections into the VMN prior to PACAP (50 

pmol/side). Although AP5 treatment alone again had no effect on feeding, it did 

successfully block the effects of PACAP injections into the VMN on food intake (Fig. 

7.4B; P < 0.05).  

Figure 7.3.  Inhibition of system xc
- activity with 4-(S)-

carboxyphenylglycine (CPG) does not block PACAP-
mediated hypophagia. Data are expressed as mean ± SEM. 
* = P < 0.05 compared to control group. 
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 With the evidence that NMDA receptor function appeared to be necessary for 

decreased food intake induced by PACAP, we examined whether similar mechanisms of 

NMDA receptor potentiation by PACAP were at play in the hypothalamus as have been  

 

 
 
reported in the hippocampus. PACAP treatment of hippocampal slices was found to 

produce increased phosphorylation of tyrosines 1252, 1336, and 1472 specifically on the  

GluN2B subunit of NMDA receptors (Yaka et al. 2003). To test for tyrosine 

phosphorylation in our feeding behavior model we performed microinjections of saline or 

PACAP in a similar manner to prior feeding behavior experiments but then collected 

VMH tissue 30 minutes post-injection for GluN2B tyrosine phosphorylation analysis. In 

western blot experiments we examined phosphorylation levels of tyrosine 1336 (pY1336) 

on the GluN2B subunit of the NMDA receptor and normalized band intensities to total  

Figure 7.4.  NMDA receptor antagonism attenuates the hypophagic effects of PACAP administration 
into the VMN. (A) Feeding responses to a dose-response of bilateral AP5 microinjections into the 
VMN. (B) Bilateral injection of 10 pmol AP5 into the VMN blocks the inhibitory effect of PACAP 
on feeding behavior. Data are expressed as mean ± SEM. * = P < 0.05 compared to control group.  
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GluN2B expression. Indeed, semi-quantitative analysis demonstrated that VMN PACAP 

treatment increased pY1336 expression by approximately 25% (Fig. 7.5A & B; P < 0.05). 

 Tyrosine phosphorylation of the NMDA receptor mediated by PACAP signaling 

has been shown to be a result of increased Src family kinase activity (Macdonald et al. 

2005; Yaka et al. 2003). This pathway has also been implicated in the regulation of  

feeding behavior by the lateral hypothalamus (Khan et al. 2004), and in support of studies 

conducted in the hippocampus (Yaka et al. 2003), the phosphorylation appears to be 

 
Figure 7.5.  PACAP administration into the VMN results in increased 
tyrosine phosphorylation of the GluN2B subunit of the NMDA receptor. 
(A) Representative VMH protein samples from saline or PACAP (50 
pmol/side) microinjections into the VMN probed for phosphorylation of 
tyrosine 1336 of the GluN2b subunit (pY1336) and total GluN2B protein 
expression. (B) Semi-quantitative analysis of band densities for pY1336 
normalized to total GluN2b expression expressed as a percent of saline 
treatment. Data are expressed as mean ± SEM. * = P < 0.05 compared to 
control group. 
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specific to the GluN2B subunit of the NMDA receptor. We confirmed increased GluN2B 

tyrosine phosphorylation following PACAP administration into the VMN, however, 

analysis of other NMDA receptor subunits was not performed in our studies. Taken 

together it is probable that PACAP-PAC1R signaling results in tyrosine phosphorylation 

of the GluN2B subunit of the NMDA receptor in the VMN through activation of an Src 

kinase similar to prior reports. To assess this possibility the Src kinase inhibitor PP1 (1 - 

1000 pmol/0.25 µl/side) was injected into the VMN followed by measurements of food 

intake. No concentration of PP1 used in these studies significantly altered food intake 

when injected into the VMN alone (Fig. 7.6A). However, pretreatment with PP1 (10 

pmol/side) in the VMN prior to PACAP injections did significantly attenuate the 

hypophagic effects of PACAP (Fig. 7.6B; P < 0.05). 

 

 

Figure 7.6.  Inhibition of Src kinase activity with PP1 attenuates PACAP-induced decreases in 
food intake in the VMN. (A) Feeding response to PP1 injections into the VMN. (B) Pretreatment of 
the VMN with PP1 prior to PACAP injections prevents PACAP-mediated hypophagia. Data are 
expressed as mean ± SEM. * = P < 0.05 compared to control group. 
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 Discussion 

 By inhibiting aspects of glutamatergic signaling we were able to examine the 

contribution of cystine-glutamate exchange as well as NMDA receptor activity to 

PACAP-mediated decreases in food intake in the VMN. While functional system xc
- 

activity was detected within the VMN, in addition to transcriptional regulation of xCT by 

PACAP signaling, inhibition of system xc
- through SSZ or CPG administration failed to 

mitigate the effects of PACAP on feeding behavior. In contrast, pretreatment with the 

NMDA receptor antagonist AP5 successfully attenuated the hypophagic response to 

PACAP administration into the VMN. These data build upon previous findings indicating 

that PACAP-PAC1R signaling may potentiate postsynaptic NMDA receptor activity 

(Figure 7.7), perhaps through phosphorylation of the GluN2B subunit (Yaka et al. 2003). 

Upon examination of GluN2B phosphorylation following in vivo VMN PACAP 

injections, we detected an increase in phosphorylation at tyrosine 1336, a previously 

identified site of PACAP-induced tyrosine phosphorylation on the GluN2B subunit of the 

NMDA receptor (Yaka et al. 2003). This Src family of non-receptor tyrosine kinases was 

previously described to facilitate NMDA receptor phosphorylation mediated by PACAP 

(Macdonald et al. 2005; Yaka et al. 2003), and hypothalamic Src activity plays a role in 

controlling feeding behavior (Khan et al. 2004). These findings led us to test whether Src 

may be a downstream mediator of PACAP-induced hypophagia in the VMN. Inhibition 

of Src family tyrosine kinases with PP1 effectively blocked the effects of PACAP on 

feeding behavior, further supporting PACAP-mediated potentiation of NMDA receptors 

via an Src-dependent pathway.    
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 Although we did not detect an effect feeding behavior following inhibition of 

system xc
- activity, altered cystine-glutamate exchange significantly impacts memory, 

psychosis, and motivated behaviors (Baker et al. 2008; Baker et al. 2003; De Bundel et 

al. 2011; Knackstedt et al. 2009; Zhou and Kalivas 2008). Furthermore, under certain 

conditions it is possible that augmented glutamate release from the cystine-glutamate 

antiporter may lead to increased excitation of VMN neurons and decreased feeding 

through activation of extrasynaptic NMDA or metabotropic glutamate receptors. Indeed, 

our dose-response of SSZ injections into the VMN showed alterations in feeding 

behavior at higher doses, and while not significant this suggests an endogenous 

glutamatergic signal at extrasynaptic NMDA and metabotropic glutamate receptors in the 

VMN. In addition, our current studies focused only on natural nocturnal feeding 

behavior, so while PACAP does appear to regulate cystine-glutamate exchange, under 

our experimental conditions changes in system xc
- activity does not contribute 

significantly to PACAP-mediated decreases in food intake in the VMN, but may under 

different circumstances.  

 Given that system xc
- is predominantly found on astrocytes, and astrocytes are 

critical to both glutamate and glucose homeostasis in the hypothalamus (Fuente-Martin et 

al. 2012; Gordon et al. 2009; Potapenko et al. 2012), a more likely role for system xc
- in 

energy balance may exist in glycemic regulation. In support of this hypothesis, both the 

VMN and third ventricle tanycytes are critical to hypothalamic glucose sensing (Borg et 

al. 1997; Garcia et al. 2003; Sanders et al. 2004; Tong et al. 2007) and express xCT 

mRNA (Sato et al. 2002). Furthermore, stimulating cystine-glutamate exchange via 

systemic administration of the cysteine prodrug N-acetylcysteine improves glucose 
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tolerance and attenuates weight gain from a high sucrose diet (Novelli et al. 2009; Souza 

et al. 2008). Although the current experiments did not examine glucose regulation, there 

is evidence that PACAP administration increases both blood glucose (Resch et al. 2013) 

and system xc
- activity (Resch et al. 2014 under review) suggesting that activation of 

system xc
- by PACAP in the VMN may impact peripheral glucose availability. 

 Similar to our current data combining NMDA receptor antagonists with PACAP 

injections into the VMN, inhibition of NMDA receptors also blocks hyperphagia induced 

by orexin and neuropeptide Y in the lateral hypothalamus (Doane et al. 2007; Lee and 

Stanley 2005). Furthermore, AMPA/kainate and NMDA glutamate receptor agonists 

produce robust feeding in sated rats, and AP5 significantly reduces refeeding following a 

fast when administered into the lateral hypothalamus (Stanley et al. 1993a; Stanley et al. 

1996; Stanley et al. 1993b). Although treatment with AP5 in the VMN did not produce 

increased feeding behavior as expected in our experiments, AP5 was administered at a 

time when feeding behavior was naturally at its peak, possibly reducing our ability to 

detect AP5-induced alterations in feeding behavior. Moreover, we unexpectedly observed 

significant decreases in food intake following high doses of AP5 (10 nmol/0.25 µl/side), 

however, high doses of AP5 appeared to concomitantly produce immobility in animals 

post-injection (data not shown) likely due to VMN regulation of physical activity (Challet 

et al. 1995; Challet et al. 1996; Choi et al. 1998; Narita et al. 2002; Narita et al. 1993; 

Resch et al. 2013; Yokawa et al. 1989). In light of our current findings that VMN 

PACAP injections produce NMDAR-dependent hypophagia and GluN2B tyrosine 

phosphorylation, GluN2B containing NMDA receptors may significantly regulate 

feeding behavior. Interestingly, GluN2B expression is widespread throughout the 
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hypothalamus including in the VMN. In the lateral hypothalamus, antagonism of GluN2B 

containing NMDA receptors with ifenprodil attenuates the feeding response to both 

fasting and microinjection of NMDA into the lateral hypothalamus, although ifenprodil 

concentrations used in these studies may have also antagonized GluN2A containing 

NMDA receptors (Khan et al. 1999; Khan et al. 2000). Furthermore, the phosphorylation 

state of the GluN2B subunit may be critical for augmenting NMDA receptor activity 

induced by PACAP signaling, and appears to be regulated by the Src family of tyrosine 

kinases (Macdonald et al. 2005; Yaka et al. 2003), a family of kinases which have also  

been reported to reduce GluN3A trafficking to the synaptic membrane (Chowdhury et al. 

2013). Importantly, inhibition of Src family tyrosine kinases by PP1 has previously been 

reported to block NMDAR-dependent feeding behavior in the lateral hypothalamus 

(Khan et al. 2004), similar to our data regarding PACAP signaling in the VMN.  

 Although our investigations of PACAP-mediated feeding behavior in the VMN 

cannot directly demonstrate potentiation of postsynaptic NMDA receptors by PACAP 

signaling, extensive biochemical and electrophysiological analysis of glutamate signaling 

in the hippocampus has demonstrated this modulatory pathway. PACAP application 

yields enhancement of field excitatory postsynaptic potentials, brain derived neurotrophic 

factor mRNA expression, and tyrosine phosphorylation of the GluN2B subunit of the 

NMDA receptor by Fyn tyrosine kinase, which is a member of the Src family of tyrosine 

kinases (Yaka et al. 2003). Further coupling PACAP to glutamate signaling, PACAP 

augments NMDA currents following Schaffer collateral stimulation through a PAC1R-

dependent pathway that activates Src tyrosine kinase (Macdonald et al. 2005). While two 

different mechanisms of NMDA receptor potentiation by PACAP have been identified,  
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Figure 7.7.  Modulation of NMDA receptor signaling by PACAP. (A) Conventional 
glutamatergic synapse showing no modulation of glutamate neurotransmission leading to 
lesser excitatory postsynaptic potential (EPSP). (B) Proposed potentiation of EPSP 
following modulation of glutamate receptors by PACAP released from glutamate and 
PACAP co-expressing neurons or PACAPergic neurons. 
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both occur as a result of tyrosine phosphorylation of NMDA receptors by a member of 

the Src family of tyrosine kinases (Fyn and Src).   

 PACAP signaling may also modulate other aspects of glutamate signaling 

including the AMPA receptor, as PAC1R-dependent potentiation of AMPA receptors at 

low PACAP concentrations and VPAC2R-mediated depression of AMPA receptors at 

high concentrations of PACAP have been reported in the hippocampus (Costa et al. 

2009). Furthermore, excitatory transmission from the basolateral amygdala to the central 

amygdala is augmented through PACAP-VPAC1R increases in AMPA receptor activity 

(Cho et al. 2012). However, without further behavioral pharmacology examining 

glutamate receptor-mediated properties of PACAP-induced hypophagia in combination 

with the appropriate electrophysiology, the role of other modes of glutamatergic 

neurotransmission cannot be ascertained. Nevertheless, our experiments using AP5 and 

PP1 attenuated the effects of PACAP on feeding suggesting a similar mechanism of 

NMDA receptor modulation by PACAP likely exists in the hypothalamus as it does in the 

hippocampus.  



133 

CHAPTER VIII 
 
 

General Discussion 
 
 

Summary  

 The studies described in this thesis highlight some of the first experiments 

investigating site-specific effects of PACAP signaling on feeding and metabolism in the 

hypothalamus. This dissertation demonstrates that PACAP administration either into the 

PVN or VMN produced hypophagia mediated by the PAC1R, while increases in energy 

expenditure via elevated activity and core body temperature were only observed 

following PACAP administration into the VMN. Retrograde tracing from the PVN and 

VMN combined with fluorescent in situ hybridization for PACAP mRNA suggest 

partially overlapping PACAP circuits innervating these two hypothalamic nuclei, 

however, distinct efferent circuits could easily account for the dichotomy in energy 

expenditure (Chapter IV), as well as the perceived increased potency of PACAP-induced 

decreases in feeding from PVN administration (Chapter III).  

 While the effects of icv and hypothalamic PACAP administration on body weight 

regulation appear to be consistent across studies (Chance et al. 1995; Dore et al. 2013; 

Hawke et al. 2009; Masuo et al. 1995; Mizuno et al. 1998; Morley et al. 1992; Mounien 

et al. 2009; Pataki et al. 2000; Resch et al. 2011; Resch et al. 2013), the mechanisms by 

which PACAP modulates neurotransmission to affect feeding and metabolism are still 

unclear. In a number of brain regions, PACAP is co-expressed with glutamatergic 

markers (Figure 5.1) (Engelund et al. 2010; Hannibal et al. 2000) and has been implicated 

to regulate glutamate signaling (Cho et al. 2012; Figiel and Engele 2000; Macdonald et 
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al. 2005), leading us to investigate potential mechanisms of glutamate modulation by 

PACAP both in vitro and in vivo. Expanding on previous reports of astrocytic glutamate 

transport regulation (Figiel and Engele 2000), we found PACAP to significantly increase 

astrocytic glutamate signaling via the cystine-glutamate antiporter, system xc
-, both in 

vitro and in vivo (Chapters VI and VII). Despite the stimulatory effects of PACAP on 

system xc
- function, augmenting glutamate signaling via PACAP-mediated increases in 

cystine-glutamate exchange did not appear to contribute to changes in feeding behavior 

as demonstrated by the ineffectiveness of intra-VMN sulfasalazine (SSZ) or (4)-(S)-

carboxyphenylglycine (CPG) to block PACAP-induced hypophagia. On the other hand, 

potentiation of postsynaptic glutamate receptor signaling by PACAP has been reported in 

areas of the brain such as the hippocampus and amygdala (Cho et al. 2012; Harrington et 

al. 1999; Macdonald et al. 2005; Yaka et al. 2003) suggesting that PACAP may augment 

NMDA or AMPA receptor activity in the hypothalamus. Indeed, NMDA receptor 

antagonism blocked the effects of PACAP on feeding behavior in the VMN corroborating 

PAC1R-NMDAR signaling pathways proposed earlier (Chapter VII). Overall these 

results indicate that PACAP acts as a modulator of glutamate neurotransmission, thereby, 

augmenting excitatory signaling, which in the case of the VMN leads to decreased food 

intake and increased metabolism, while maintaining an optimal synaptic environment 

through astrocytic regulation of glutamate homeostasis. The following sections discuss 

the importance of the results described within this thesis, as well as remaining questions 

that should be addressed in the future to further understand hypothalamic PACAP 

signaling.   
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What is the endogenous role of PACAP signaling in terms of energy balance? 

 Central PACAP signaling appears to function as a significant satiety factor, as 

well as a stimulator of metabolism (Chance et al. 1995; Hawke et al. 2009; Mizuno et al. 

1998; Morley et al. 1992; Mounien et al. 2009; Resch et al. 2011; Resch et al. 2013). 

Unfortunately, the circumstances under which PACAP becomes important for the 

regulation of energy balance remain unclear. While neuropeptides such as oxytocin and 

vasopressin are released dendritically and only from brief high-frequency action 

potentials (Kombian et al. 1997; Leng and Ludwig 2008), data characterizing the release 

dynamics of PACAP is lacking. Furthermore, in vivo estimates of neuropeptide diffusion 

and rates of degradation within the hypothalamus are very difficult to predict, but the 

long duration of PACAP-induced effects may suggest that the neuropeptide is active in 

some form for quite some time following its release.   

 Clues to PACAP's physiological importance have emerged in recent years, linking 

it to several critical hypothalamic signals such as leptin, corticotropin-releasing factor 

(CRF), and melanocortin signaling (Dore et al. 2013; Hawke et al. 2009; Mounien et al. 

2009; Tanida et al. 2013; Tanida et al. 2011a). However, many of these studies 

administer antagonists along with agonists into the brain's ventricular system, which 

often results in effective attenuation of agonistic properties (Dore et al. 2013; Hawke et 

al. 2009; Mounien et al. 2009; Tanida et al. 2013; Tanida et al. 2011a). Experimental 

designs utilizing ventricular injection routes cannot account for separate but parallel 

circuits involving PACAP and other neuromodulators. For example, Hawke et al. 

reported that the PAC1R antagonist PACAP6-38 completely blocked the effects of leptin 

on feeding and metabolism, which leads to the assumption that PACAP neurons mediate 
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leptin signaling. Yet, there are several other neuronal populations, not just in the 

hypothalamus but throughout the brain, that express leptin receptors and affect energy 

balance independent of PACAP signaling (Balthasar et al. 2004; DiLeone 2009; Elmquist 

et al. 2005; Kong et al. 2012; Leinninger et al. 2009; Zhang et al. 2011). It is more likely 

that PACAP6-38 and leptin merely have separate but opposing effects that result in 

neutralization of the signals leading to false interpretations. Furthermore, PACAP 

neurons are almost exclusively glutamatergic and leptin regulation of body weight is 

predominantly mediated through GABAergic neurons (Vong et al. 2011). Therefore, 

instead of presuming that PACAP has a specific physiological role similar to CRF and 

stress, it may be more accurate to suggest that PACAP is simply pleiotropic in nature, 

acting within multiple neural systems as a modulator of glutamate signaling. The pattern 

of PACAP expression in the brain corroborates this notion, with PACAP mRNA 

expression found in several brain regions (Hannibal 2002) with a wide range of functions, 

regulating affect (Dore et al. 2013; Hammack et al. 2009), fear (Ressler et al. 2011; 

Stevens et al. 2014), and body weight (Hawke et al. 2009; Krashes et al. 2014; Mounien 

et al. 2009; Resch et al. 2013) among others.  

Significance of afferent PACAP circuits to the hypothalamus  

 The PVN and VMN are both glutamatergic cell populations in the hypothalamus 

(Ziegler et al. 2002) that produce obesity when lesioned (Choi and Dallman 1999; 

Tokunaga et al. 1986). Given that icv PACAP administration results in decreased feeding 

behavior we hypothesized that these two nuclei are likely targets for PACAP-mediated 

hypophagia. Site-specific PACAP injections into the PVN and VMN did indeed produce 

decreased feeding similar to icv administration, but alterations to thermogenesis stemmed 
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from PACAP injections only into the VMN. With this in mind we began to map the 

PACAP-containing circuits that mediate satiety using retrograde tracing from the PVN 

and VMN combined with in situ hybridization for PACAP mRNA (Figure 8.1). These 

anatomical studies identified the lateral parabrachial nuclei (LPB) to contain PACAP-

expressing neurons that project to both the PVN and VMN indicating that the LPB are 

prominent sources of PACAP release into these structures. LPB neurons are activated by 

the satiety signals cholecystokinin (CCK) and amylin (Becskei et al. 2007), as well as by 

substances that are perceived to be toxic such as LiCl or lipopolysaccharide (LPS) (Carter 

et al. 2013) producing hypophagia through signaling downstream of the LPB. In addition, 

activation of ascending fibers carrying cutaneous thermosensory information excite LPB 

neurons in order to regulate body temperature, thereby identifying this circuit as 

potentially relevant to VMN induction of BAT thermogenesis by PACAP. More studies 

investigating the stimuli necessary for activation of PACAP-expressing LPB neurons are 

needed to understand the specific physiological role of these neurons with respect to 

feeding and metabolism.  

 VMN-specific afferents expressing PACAP originated from the medial amygdala 

(MeA), a brain region less familiar to the study of body weight regulation. While the 

MeA does possess a small population of glucose-sensing neurons (Zhou et al. 2010) and 

produces obesity when lesioned, especially in females (King 2006a), its main function 

appears to be involved in the processing of olfaction, as the MeA receives considerable 

input from the olfactory bulb (Park et al. 2013) leading to activation of its neurons in the 

presence of pheromones or predator odors (Bian et al. 2008; Butler et al. 2011; Kondo 

1992; Masini et al. 2009; Staples et al. 2008). Therefore, this vomeronasal pathway may 
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involve the VMN in the activation of the sympathetic fight or flight response and/or 

dampen parasympathetic activity in times of psychosocial stress, as the VMN have been 

implicated in mating behaviors and aggression (Yang et al. 2013). 

 PVN-specific afferents expressing PACAP included the anteromedial bed nucleus 

of the stria terminalis (BNST), a well-characterized region of the brain regulating stress 

and anxiety-related behaviors. This PACAP-expressing circuit may be responsible not 

only for regulation of the hypothalamic-pituitary-adrenal (HPA) axis by the PVN, but 

also the hypophagia that often corresponds with stressful and anxiogenic stimuli.  

Interestingly, we found a PACAP-expressing neuronal population in the anteromedial 

BNST that projects to the PVN that we propose regulates feeding behavior in some 

fashion, however, a recent study by Kocho-Schellenberg et al. reports that PACAP 

administration into the posterior BNST produces significant decreases in feeding 

behavior and body weight, while the the anterior BNST did not (Kocho-Schellenberg et 

al. 2014). Though these findings appear to be in contradiction, PACAP injections into 

areas of the BNST stimulate neurons expressing PACAP receptors, and not necessarily 

the neurons expressing PACAP mRNA that we propose inhibit feeding by projecting to 

the PVN.    

 Finally, a subset of PACAP neurons of the VMN project to the PVN, perhaps to 

the preautonomic subpopulation, providing a connection that allows VMN neurons to 

produce hypophagia or activation of glucose production in response to hypoglycemia. 

VMN PACAP neurons also project to pro-opiomelanocortin (POMC) neurons of the 

hypothalamic arcuate nuclei (ARC) (Krashes et al. 2014) suggesting that stimulation of 

the VMN by PACAP contributes to additional routes that inhibit feeding behavior.  
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Figure 8.1.  Review of PACAP-expressing afferent circuits of the paraventricular (PVN) and 
ventromedial (VMN) nuclei. (A) Afferents of the PVN that may regulate energy homeostasis through 
PACAP signaling originate from the bed nucleus of the stria terminalis (BNST), lateral parabrachial 
nuclei (LPBN), and VMN. (B) Afferents of the VMN that potentially regulate energy balance through 
PACAP signaling originate from the LPBN and medial amygdala (MeA). 
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Notably, PACAP administration into the PVN did not affect indices of energy 

expenditure in our experiments, perhaps suggesting that ARC POMC neuron activation 

by VMN neurons are responsible for these effects, as they are known to project to and 

stimulate preganglionic sympathetic neurons of the intermediolateral spinal cord 

coordinating aspects of sympathetic nervous system activity (Elias et al. 1998).  

Significance of efferent PACAP circuits from the hypothalamus  

  Decades of research focusing on hypothalamic regulation of feeding behavior 

have referred to both the PVN and VMN as "satiety centers" following demonstrations of 

stimulation-induced hypophagia and lesion-induced hyperphagia and obesity (Beltt and 

Keesey 1975; Choi and Dallman 1999; Kennedy 1950; Leibowitz et al. 1981; Ruffin and 

Nicolaidis 1999; Stenger et al. 1991; Tokunaga et al. 1986). Despite this wealth of data, 

remarkably little is known about the downstream circuitry that produces satiety, as both 

of these nuclei have considerable efferent targets making it difficult to isolate the feeding 

circuits from circuits controlling other aspects of physiology. The utilization of gene 

targeting approaches allowing for the examination of function within distinct circuits will 

provide giant steps towards providing a wiring diagram for hypothalamic feeding circuits.  

 Nonetheless, there are some known efferents that produce satiety involving these 

nuclei including PACAP projections from the VMN to ARC POMC, but not AgRP/NPY 

neurons (Krashes et al. 2014; Resch et al. 2011; Sternson et al. 2005), and projections to 

the PVN (Resch et al. 2013). Efferents from the PVN to areas such as the nucleus tractus 

solitarius (NTS) have been shown to inhibit brown adipose tissue thermogenesis without 

effects on satiety (Kong et al. 2012). Recently, however, a pro-feeding circuit was 

recently discovered involving a subpopulation of PVN neurons that express PACAP 
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and/or thyrotropin-releasing hormone (TRH). These neurons project specifically to ARC 

AgRP neurons and provide intense excitatory stimulation under fasting conditions 

thereby completely transforming our presumptions about PACAP and PVN function 

(Krashes et al. 2014). 

What hypothalamic cell populations express PACAP receptors? 

 As the organization of the ARC and PVN alone demonstrate, hypothalamic 

neurocircuitry is extraordinarily complex, often with multiple cell populations within the 

same nuclei having completely opposing or seemingly unrelated functions. This 

demonstrates the importance of understanding which specific cell populations are 

mediating the effects of PACAP signaling on feeding and metabolism. This point is 

exemplified by PACAP receptor expression in the PVN, which when activated by 

PACAP injections decrease feeding behavior and increase peripheral glucose levels 

(Resch et al. 2013). Though we were able to attribute the hypophagic effect of PACAP to 

activation of the PAC1 receptor we did not identify the receptor involved in modulating 

glucose availability, although another research group has indicated that VPAC2 receptors 

are important for stimulation of hepatic glucose production following PACAP injections 

into the PVN (Yi et al. 2010). It is unclear whether the same PVN cells express both 

types of PACAP receptors yielding those effects, or if distinct PACAP circuits target 

different cell populations within the PVN. Currently, expression patterns of PAC1 and 

VPAC receptors are not well characterized amongst the many cell phenotypes of the 

PVN, or in any of the other hypothalamic nuclei outside of the ARC where the PAC1 

receptor has been linked to feeding and to show expression on both POMC and 
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NPY/AgRP neurons (Krashes et al. 2014; Mounien et al. 2006a; Mounien et al. 2006b; 

Mounien et al. 2009).  

Glutamate modulation by PACAP 

 Our results from Chapters VI and VII demonstrate a relationship between PACAP 

and glutamate signaling that results in increased astrocytic system xc
- activity, as well as 

apparent potentiation of NMDA receptor activity in the VMN. Furthermore, our findings 

demonstrate that tyrosine phosphorylation of the GluN2B subunit of the NMDA receptor 

in the VMN stimulated by PACAP injections and the attenuation of PACAP-induced 

hypophagia by inhibition of Src kinases agree with prior reports that an Src-dependent 

pathway resulting in NMDA receptor potentiation is driven by PACAP (Macdonald et al. 

2005; Yaka et al. 2003). However, without evidence of PAC1R signaling acting directly 

on the NMDA receptor through electrophysiological investigation we cannot completely 

rule out the possibility of indirect modulation of the NMDA receptor through other 

PACAP-related mechanisms. While pharmacological inhibition of the NMDA receptor 

with AP5 and Src with PP1 both attenuated the effects of PACAP on feeding behavior, 

we acknowledge that eliminating such essential components of cell signaling may render 

VMN neurons nonfunctional independent of PAC1R signaling pathways. Although we 

do not believe this is the case, as pharmacological inhibition of NMDA receptors or Src 

kinase alone did not produce behavioral effects, and others have used similar means to 

examine NMDA receptor (Stanley et al. 1996) and Src kinase (Khan et al. 2004) activity 

with regard to feeding behavior.  

 Modulating other aspects of glutamate signaling to affect feeding behavior is also 

a viable possibility. As with NMDA receptors, PACAP has been shown to augment 
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AMPA receptor activity in the hippocampus and amygdala suggesting that multiple 

second messenger signals with numerous targets could be stimulated by PACAP receptor 

activation (Cho et al. 2012; Costa et al. 2009). In addition to postsynaptic localization of 

the PAC1 receptor with ionotropic glutamate receptors (Cho et al. 2012; Costa et al. 

2009; Harrington et al. 1999; Macdonald et al. 2005; Shioda et al. 1997; Yaka et al. 

2003), PACAP receptors also exist presynaptically on mossy fibers of the hippocampus 

and cerebellum likely having a significant impact on presynaptic neurotransmitter release 

(Otto et al. 1999). While postsynaptic mechanisms of PAC1R signaling appear to 

dominate the literature, we have not specifically addressed the possibility of presynaptic 

regulation and thus, it cannot be ruled out.  

 Non-neuronal expression of PACAP receptors, especially on astrocytes, may 

substantially contribute to PACAP-mediated behaviors by significantly impacting 

glutamate neurotransmission. Although PACAP regulation of the astrocytic glial 

glutamate transporters GLT-1 and GLAST could have considerable ramifications on 

synaptic signaling, we have yet to address such actions by PACAP signaling in the 

hypothalamus. However, we have demonstrated augmented astrocytic cystine-glutamate 

exchange by PACAP signaling, with the initial studies conducted in primary cortical 

cultures, while acknowledging the unique cellular physiology compared to hypothalamic 

cells in vivo. Although we did detect significant increases in xCT mRNA in the VMN 

following PACAP injections, inhibition of system xc
- activity did not block PACAP-

mediated alterations in feeding behavior. But, without verification of direct action of 

PACAP signaling both in and out of the synapse it is difficult to unequivocally confirm 

the exact mechanism by which PACAP modulates glutamate to alter feeding behavior.  
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Conclusions 

 The impact of PACAP signaling on body weight is complex. Not only do we 

report hypophagia and increased energy expenditure from site-specific hypothalamic 

injections (Resch et al. 2013), recent reports indicate that PACAP-expressing circuits that 

drive hunger  may also exist in the hypothalamus (Krashes et al. 2014). Moreover, 

PACAP's mechanism of action is still unknown. Even though it appears to have a 

stimulatory effect via PAC1R that is dependent upon NMDA receptor signaling, PACAP 

and its receptors have multiple modulatory actions on glutamate signaling in and around 

the synapse that may be critical to their function. Thus, future directions for investigating 

the mechanisms by which PACAP controls hypothalamic function should continue to 

focus on mapping PACAP circuits to and from the hypothalamus, determine which 

subpopulations of neurons express the feeding responsive PAC1 receptor, and confirm 

the specific actions of PACAP signaling on glutamate homeostasis, although the latter 

may prove challenging as differentiating between signals emanating from neurons and 

astrocytes in vivo will necessitate the development of new tools outside of those used 

here. 
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