2,102 research outputs found
Advanced Solid-State Array Spectrometer (ASAS) data sets from the 1990 field season: A unique look at two forested ecosystems
The Advanced Solid-state Array Spectrometer (ASAS) is a pointable imaging spectrometer which uses a solid-state array to acquire imagery of terrestrial targets in 29 spectral bands from .4 to .8 microns. Performance and calibration of the instrument are described. The ASAS data sets obtained in 1990 provide a unique look at forest canopies from two different forest regions of the North America continent under varying temporal, spectral, and bidirectional conditions. These data sets will be used to study such parameters as the albedo of forest canopies, the dynamics of scene radiation due to factors such as canopy architecture, moisture stress, leaf chemistry, topography, and understory composition
How effective--and safe--are systemic steroids for acute low back pain?
Short courses of systemic steroids are likely safe, but they are ineffective. A single dose of intramuscular (IM) or intravenous (IV) methylprednisolone doesn't improve long-term pain scores in patients with low back pain and sciatica and produces conflicting effects on function. Oral prednisone (9-day taper) doesn't improve pain or function in patients with back pain and sciatica. A single IM dose of methylprednisolone doesn't improve pain scores or function in patients with back pain without sciatica (strength of recommendation: B, randomized controlled trials [RCTs]). No trials of corticosteroids for back pain reported an increase in adverse outcomes, but studies were small, and only short-term (1 month) follow-up data are available
Restructuring and Serving Web-Accessible Streamflow Data From the NOAA National Water Model Historic Simulations
In 2016, the National Oceanic and Atmospheric Administration deployed the first iteration of an operational National Water Model (NWM) to forecast the water cycle in the continental United States. With many versions, an hourly, multi-decadal historic simulation is made available to the public. In all released to date, the files containing simulated streamflow contain a snapshot of model conditions across the entire domain for a single timestep which makes accessing time series a technical and resource-intensive challenge. In the most recent release, extracting a complete streamflow time series for a single location requires managing 367,920 files (~16.2 TB). In this work we describe a reproducable process for restructuring a sequential set of NWM steamflow files for efficient time series access and provide restructured datasets for versions 1.2 (1993-2018), 2.0 (1993-2020), and 2.1 (1979-2022). These datasets have been made accessible via an OPeNDAP enabled THREDDS data server for public use and a brief analysis highlights the latest version of the model should not be assumed best for all locations. Laslty, we describe an R package that expedites data retrieval with examples for multiple use-cases
Recommended from our members
Mapping The Interstellar Medium With Near-Infrared Diffuse Interstellar Bands
We map the distribution and properties of the Milky Way's interstellar medium as traced by diffuse interstellar bands (DIBs) detected in near-infrared stellar spectra from the SDSS-III/APOGEE survey. Focusing exclusively on the strongest DIB in the H band, at lambda similar to 1.527 mu m, we present a projected map of the DIB absorption field in the Galactic plane, using a set of about 60,000 sightlines that reach up to 15 kpc from the Sun and probe up to 30 mag of visual extinction. The strength of this DIB is linearly correlated with dust reddening over three orders of magnitude in both DIB equivalent width (Wpm) and extinction, with a power law index of 1.01 +/- 0.01, a mean relationship of W-DIB/A(v) = 0.1 angstrom mag(-1) and a dispersion of similar to 0.05 angstrom mag(-1) at extinctions characteristic of the Galactic midplane. These properties establish this DIB as a powerful, independent probe of dust extinction over a wide range of Av values. The subset of about 14,000 robustly detected DIB features have a W-DIB distribution that follows an exponential trend. We empirically determine the intrinsic rest wavelength of this transition to be lambda(0) = 15 272.42 angstrom and use it to calculate absolute radial velocities of the carrier, which display the kinematical signature of the rotating Galactic disk. We probe the DIB carrier distribution in three dimensions and show that it can be characterized by an exponential disk model with a scale height of about 100 pc and a scale length of about 5 kpc. Finally, we show that the DIB distribution also traces large-scale Galactic structures, including the Galactic long bar and the warp of the outer disk.NSF Astronomy & Astrophysics Postdoctoral Fellowship AST-1203017NSF AST-1109665Alfred P. Sloan FoundationNational Science FoundationU.S. Department of Energy Office of ScienceUniversity of ArizonaBrazilian Participation GroupBrookhaven National LaboratoryUniversity of CambridgeCarnegie Mellon UniversityUniversity of FloridaFrench Participation GroupGerman Participation GroupHarvard UniversityInstituto de Astrofisica de CanariasMichigan State/Notre Dame/JINA Participation GroupJohns Hopkins UniversityLawrence Berkeley National LaboratoryMax Planck Institute for AstrophysicsMax Planck Institute for Extraterrestrial PhysicsNew Mexico State UniversityNew York UniversityOhio State UniversityPennsylvania State UniversityUniversity of PortsmouthPrinceton UniversitySpanish Participation GroupUniversity of TokyoUniversity of UtahVanderbilt UniversityUniversity of VirginiaUniversity of WashingtonYale UniversitySpanish Ministry of Economy and Competitiveness AYA-2011-27754McDonald Observator
Assessing adaptation of the cancer kinome in response to targeted therapies
Cancer cells are dependent on protein kinase signalling networks to drive proliferation and to promote survival, and, accordingly, kinases continue to represent a major target class for development of anti-cancer therapeutics. Kinase inhibitors nevertheless have yielded only limited success with many different malignancies due to the inability of single agents to sustain a durable clinical response. Cancer cell kinomes are highly resilient and able to bypass targeted kinase inhibition, leading to tumour resistance. A novel platform has been developed to analyse the activity of the expressed kinome using MIBs (multiplexed inhibitor beads), which consist of Sepharose beads with covalently immobilized inhibitors that preferentially bind activated kinases. Coupling MIB capture with MS (MIB-MS) allows simultaneous determination of the activity of over 75% of the expressed kinome, facilitating high-throughput assessment of adaptive kinase responses resulting from deregulated feedback and feedforward regulatory mechanisms. The adaptive response frequently involves transcriptional up-regulation of specific kinases that allow bypass of the targeted kinase. Understanding how the kinome reprogrammes to targeted kinase inhibition will allow novel therapeutic strategies to be developed for durable clinical responses
The Ursinus Weekly, April 26, 1965
Ursinus Meistersingers present tour program • Student-Faculty show combines music, humor, satire • Library week: April 25 to May 1 • Campus Chest encouraged by enthusiastic support: One down, one to go • Campus freedom, Sunisru and you • Dr. Helfferich hosts dinner • Invitation • Shakespeare theatre festival • Last chapel May 13th • Editorial: Meistersingers concert; They\u27re all right, Jack; In the name of sweet charity • H.R.C. wages unending war: Greater than 1776 • Toward maturity • Peon or pledge? • Lacrosse team remains undefeated • Baseball team evens log; Beats W. Maryland, Johns Hopkins • Thinclads nip Swarthmore • Softballers open season with win • MSGA candidates speak out: L. Rudnyansky; R. Reed; R. Shaw • U.C. student pioneer corpsman • Ruby sales awards • Greek gleaningshttps://digitalcommons.ursinus.edu/weekly/1247/thumbnail.jp
Second cohomology for finite groups of Lie type
Let be a simple, simply-connected algebraic group defined over
. Given a power of , let
be the subgroup of -rational points. Let be the
simple rational -module of highest weight . In this paper we
establish sufficient criteria for the restriction map in second cohomology
to be an
isomorphism. In particular, the restriction map is an isomorphism under very
mild conditions on and provided is less than or equal to a
fundamental dominant weight. Even when the restriction map is not an
isomorphism, we are often able to describe in
terms of rational cohomology for . We apply our techniques to compute
in a wide range of cases, and obtain new
examples of nonzero second cohomology for finite groups of Lie type.Comment: 29 pages, GAP code included as an ancillary file. Rewritten to
include the adjoint representation in types An, B2, and Cn. Corrections made
to Theorem 3.1.3 and subsequent dependent results in Sections 3-4. Additional
minor corrections and improvements also implemente
First cohomology for finite groups of Lie type: simple modules with small dominant weights
Let be an algebraically closed field of characteristic , and let
be a simple, simply connected algebraic group defined over .
Given , set , and let be the corresponding
finite Chevalley group. In this paper we investigate the structure of the first
cohomology group where is the
simple -module of highest weight . Under certain very mild
conditions on and , we are able to completely describe the first
cohomology group when is less than or equal to a fundamental dominant
weight. In particular, in the cases we consider, we show that the first
cohomology group has dimension at most one. Our calculations significantly
extend, and provide new proofs for, earlier results of Cline, Parshall, Scott,
and Jones, who considered the special case when is a minimal nonzero
dominant weight.Comment: 24 pages, 5 figures, 6 tables. Typos corrected and some proofs
streamlined over previous versio
The Disunity of Consciousness
It is commonplace for both philosophers and cognitive scientists to express their allegiance to the
"unity of consciousness". This is the claim that a subjectÂ’s phenomenal consciousness, at any one
moment in time, is a single thing. This view has had a major influence on computational theories
of consciousness. In particular, what we call single-track theories dominate the literature,
theories which contend that our conscious experience is the result of a single consciousness-making
process or mechanism in the brain. We argue that the orthodox view is quite wrong:
phenomenal experience is not a unity, in the sense of being a single thing at each instant. It is a
multiplicity, an aggregate of phenomenal elements, each of which is the product of a distinct
consciousness-making mechanism in the brain. Consequently, cognitive science is in need of a
multi-track theory of consciousness; a computational model that acknowledges both the
manifold nature of experience, and its distributed neural basis
- …