6,071 research outputs found
Dogs catch human yawns
This study is the first to demonstrate that human yawns are possibly contagious to domestic dogs (Canis familiaris). Twenty-nine dogs observed a human yawning or making control mouth movements. Twenty-one dogs yawned when they observed a human yawning, but control mouth movements did not elicit yawning from any of them. The presence of contagious yawning in dogs suggests that this phenomenon is not specific to primate species and may indicate that dogs possess the capacity for a rudimentary form of empathy. Since yawning is known to modulate the levels of arousal, yawn contagion may help coordinate dog–human interaction and communication. Understanding the mechanism as well as the function of contagious yawning between humans and dogs requires more detailed investigation
First record of Curius chemsaki Nearns and Ray, 2006 (Coleoptera: Cerambycidae: Cerambycinae: Curiini) in Colombia
Curius chemsaki Nearns and Ray, 2006 (Coleoptera: Cerambycidae: Cerambycinae: Curiini), is reported from Colombia for the first time. In addition, the range of this taxon within Venezuela is extended to the Andean Province of Táchira
Nonlinear optics in Xe-filled hollow-core PCF in high pressure and supercritical regimes
Supercritical Xe at 293 K offers a Kerr nonlinearity that can exceed that of
fused silica while being free of Raman scattering. It also has a much higher
optical damage threshold and a transparency window that extends from the UV to
the infrared. We report the observation of nonlinear phenomena, such as
self-phase modulation, in hollow-core photonic crystal fiber filled with
supercritical Xe. In the subcritical regime, intermodal four-wave-mixing
resulted in the generation of UV light in the HE12 mode. The normal dispersion
of the fiber at high pressures means that spectral broadening can clearly
obtained without influence from soliton effects or material damage
Spectroscopy of Close Companions to QSOs and the Ages of Interaction-Induced Starbursts
We present low-resolution absorption-line spectra of three candidate close (
< 3 arcsec) companions to the low redshift QSOs 3CR 323.1, PG 1700+518, and PKS
2135-147. The spectra were obtained with LRIS on the Keck telescopes and with
the Faint Object Spectrograph on the University of Hawaii 2.2 m telescope. For
3CR 323.1 and PG 1700+518, we measure relative velocities that are consistent
with an association between the QSOs and their companion galaxies. The spectral
features of the companion galaxy to 3CR 323.1 indicate a stellar population of
intermediate age (approx. 2.3 Gyr). In contrast, the spectrum of the companion
object to PG 1700+518 shows strong Balmer absorption lines from a relatively
young stellar population, along with the Mg Ib absorption feature and the 4000
A break from an older population. By modeling the two stellar components of
this spectrum, it is possible to estimate the time that has elapsed since the
end of the most recent major starburst event: we obtain approx. 0.1 Gyr. This
event may have coincided with an interaction that triggered the QSO activity.
Finally, our spectroscopy shows conclusively that the supposed companion to PKS
2135-147 is actually a projected Galactic G star.Comment: 10 pages, 5 Postscript figures. Latex (AASTEX). To appear in ApJ.
Letters, Volume 480 (1997
Wetting on Nanorough Surfaces
We present in this Letter a free-energy approach to the dynamics of a fluid
near a nanostructured surface. The model accounts both for the static phase
equilibrium in the vicinity of the surface (wetting angles, Cassie-Wenzel
transition) and the dynamical properties like liquid slippage at the boundary.
This method bridges the gap between phenomenological phase-field approaches and
more macroscopic lattice-Boltzmann models
Exponential decay for the damped wave equation in unbounded domains
We study the decay of the semigroup generated by the damped wave equation in
an unbounded domain. We first prove under the natural geometric control
condition the exponential decay of the semigroup. Then we prove under a weaker
condition the logarithmic decay of the solutions (assuming that the initial
data are smoother). As corollaries, we obtain several extensions of previous
results of stabilisation and control
On Quasar Masses and Quasar Host Galaxies
The mass of massive black holes in quasar cores can be deduced using the
typical velocities of Hb-emitting clouds in the Broad Line Region (BLR) and the
size of this region. However, this estimate depends on various assumptions and
is susceptible to large systematic errors. The Hb-deduced black hole mass in a
sample of 14 bright quasars is found here to correlate with the quasar host
galaxy luminosity, as determined with the Hubble Space Telescope (HST). This
correlation is similar to the black hole mass vs. bulge luminosity correlation
found by Magorrian et al. in a sample of 32 nearby normal galaxies. The
similarity of the two correlations is remarkable since the two samples involve
apparently different types of objects and since the black hole mass estimates
in quasars and in nearby galaxies are based on very different methods.
This similarity provides a ``calibration'' of the Hb-deduced black hole mass
estimate, suggesting it is accurate to +-0.5 on log scale. The similarity of
the two correlations also suggests that quasars reside in otherwise normal
galaxies, and that the luminosity of quasar hosts can be estimated to +-0.5 mag
based on the quasar continuum luminosity and the Hb line width. Future imaging
observations of additional broad-line active galaxies with the HST are required
in order to explore the extent, slope, and scatter of the black hole mass vs.
host bulge luminosity correlation in active galaxies.Comment: Accepted for publication in ApJ Letters, 7 pages, aas2pp4.st
- …