421 research outputs found
Plane-wave based electronic structure calculations for correlated materials using dynamical mean-field theory and projected local orbitals
The description of realistic strongly correlated systems has recently
advanced through the combination of density functional theory in the local
density approximation (LDA) and dynamical mean field theory (DMFT). This
LDA+DMFT method is able to treat both strongly correlated insulators and
metals. Several interfaces between LDA and DMFT have been used, such as (N-th
order) Linear Muffin Tin Orbitals or Maximally localized Wannier Functions.
Such schemes are however either complex in use or additional simplifications
are often performed (i.e., the atomic sphere approximation). We present an
alternative implementation of LDA+DMFT, which keeps the precision of the
Wannier implementation, but which is lighter. It relies on the projection of
localized orbitals onto a restricted set of Kohn-Sham states to define the
correlated subspace. The method is implemented within the Projector Augmented
Wave (PAW) and within the Mixed Basis Pseudopotential (MBPP) frameworks. This
opens the way to electronic structure calculations within LDA+DMFT for more
complex structures with the precision of an all-electron method. We present an
application to two correlated systems, namely SrVO3 and beta-NiS (a
charge-transfer material), including ligand states in the basis-set. The
results are compared to calculations done with Maximally Localized Wannier
functions, and the physical features appearing in the orbitally resolved
spectral functions are discussed.Comment: 15 pages, 17 figure
Influence of Ion Implantation and Gas Exposure on the Charge in Silicon Oxide Created by Electronic Excitation
Low energy electron bombardment of amorphous SiO2 induces point defects such as oxygen vacancy by electronic excitation. The defects build a macroscopic negative charge by trapping of electrons on the localized levels in the band gap; this phenomenon was previously described as the mirror effect. In the present paper, we investigate, by mirror effect, the behavior of the charge after an argon, nitrogen and oxygen implantation at 1 and 4 keV, and after exposure to the same gases at various low pressures. We observe a difference of behavior between Ar (or N2) and O2, The results reinforce the outstanding role of oxygen in the defect production in SiO2 by electronic excitation
A compact light readout system for longitudinally segmented shashlik calorimeters
The longitudinal segmentation of shashlik calorimeters is challenged by dead
zones and non-uniformities introduced by the light collection and readout
system. This limitation can be overcome by direct fiber-photosensor coupling,
avoiding routing and bundling of the wavelength shifter fibers and embedding
ultra-compact photosensors (SiPMs) in the bulk of the calorimeter. We present
the first experimental test of this readout scheme performed at the CERN PS-T9
beamline in 2015 with negative particles in the 1-5~GeV energy range. In this
paper, we demonstrate that the scheme does not compromise the energy resolution
and linearity compared with standard light collection and readout systems. In
addition, we study the performance of the calorimeter for partially contained
charged hadrons to assess the separation capability and the response of
the photosensors to direct ionization.Comment: To appear in Nuclear Instruments and Methods in Physics Research,
Study of 2 beta-decay of Mo-100 and Se-82 using the NEMO3 detector
After analysis of 5797 h of data from the detector NEMO3, new limits on neutrinoless double beta decay of Mo-100 (T-1/2 > 3.1 x 10(23) y, 90% CL) and Se-82 (T-1/2 > 1.4 x 10(23) y, 90% CL) have been obtained. The corresponding limits on the effective majorana neutrino mass are: 1.4 x 10(22) y (90% CL) for Mo-100 and T-1/2 > 1.2 x 10(22) y (90% CL) for Se-82. Corresponding bounds on the Majoron-neutrino coupling constant are < (0.5-0.9) x 10(- 4) and <(0.7-1.6) x 10(- 4). Two-neutrino 2beta-decay half-lives have been measured with a high accuracy, (T1/2Mo)-Mo-100 = [7.68 +/- 0.02(stat) +/- 0.54(syst)] x 10(18) y and (T1/2Se)-Se-82 = [10.3 +/- 0.3(stat) +/- 0.7(syst)] x 10(19) y. (C) 2004 MAIK "Nauka/Interperiodica"
Measurement of double beta decay of ¹⁰⁰Mo to excited states in the NEMO 3 experiment
The double beta decay of ¹⁰⁰Mo to the 0_{1}^{+} and 2_{1}^{+} excited states of ¹⁰⁰Ru is studied using the NEMO 3 data. After the analysis of 8024 h of data the half-life for the two-neutrino double beta decay of ¹⁰⁰Mo to the excited 0_{1}^{+} state is measured to be T_{1/2}^{2v} = [5.7_{-0.9}^{+1.3} (stat.) ± 0.8 (syst.)] x 10²⁰ y. The signal-to-background ratio is equal to 3. Information about energy and angular distributions of emitted electrons is also obtained. No evidence for neutrinoless double beta decay to the excited 0_{1}^{+} state has been found. The corresponding half-life limit is T_{1/2}^{0v} (0⁺→0_{1}^{+}) > 8.9 x 10²² y (at 90% C.L.). The search for the double beta decay to the 2_{1}^{+} excited state has allowed the determination of limits on the half-life for the two neutrino mode T_{1/2}^{0v} (0⁺→2_{1}^{+}) > 1.1 x 10²¹ y (at 90% C.L.) and for the neutrinoless mode T_{1/2}^{0v} (0⁺→2_{1}^{+}) > 1.6 x 10²³ y (at 90% C.L.)
R2D2 TPC: first Xenon results
Radial time projection chambers (TPC), already employed in the search for
rare phenomena such as light Dark Matter candidate, could provide a new
detection approach for the search of neutrinoless double beta decay
(). The assessment of the performances of such a detector for
search is indeed the goal of the Rare Decays with Radial
Detector (R2D2) R\&D. Promising results operating a spherical TPC with argon up
to 1~bar have been published in 2021. Supplementary measurements were recently
taken extending the gas pressure range up to 3~bar. In addition, a comparison
between two detector geometries, namely spherical (SPC for spherical
proportional counter) and cylindrical (CPC for cylindrical proportional
counter), was performed. Using a relatively simple gas purification system the
CPC detector was also operated with xenon at 1~bar: an energy resolution of
1.4\% full-width at half-maximum was achieved for drift distances up to 17~cm.
Much lower resolution was observed with the SPC. These results are presented in
this article.Comment: 16 pages 14 figure
A narrow band neutrino beam with high precision flux measurements
The ENUBET facility is a proposed narrow band neutrino beam where lepton
production is monitored at single particle level in the instrumented decay
tunnel. This facility addresses simultaneously the two most important
challenges for the next generation of cross section experiments: a superior
control of the flux and flavor composition at source and a high level of
tunability and precision in the selection of the energy of the outcoming
neutrinos. We report here the latest results in the development and test of the
instrumentation for the decay tunnel. Special emphasis is given to irradiation
tests of the photo-sensors performed at INFN-LNL and CERN in 2017 and to the
first application of polysiloxane-based scintillators in high energy physics.Comment: Poster presented at NuPhys2017 (London, 20-22 December 2017). 5
pages, 2 figure
- …