4 research outputs found
Real-Time Observations of Food and Fluid Timing During a 120 km Ultramarathon
The aim of the present case study was to use real-time observations to investigate ultramarathon runners' timing of food and fluid intake per 15 km and per hour, and total bodyweight loss due to dehydration. The study included 5 male ultramarathon runners observed during a 120 km race. The research team members followed on a bicycle and continuously observed their dietary intake using action cameras. Hourly carbohydrate intake ranged between 22.1 and 62.6 g/h, and fluid intake varied between 260 and 603 mL/h. These numbers remained relatively stable over the course of the ultra-endurance marathon. Runners consumed food and fluid on average 3–6 times per 15 km. Runners achieved a higher total carbohydrate consumption in the second half of the race (p = 0.043), but no higher fluid intake (p = 0.08). Energy gels contributed the most to the total average carbohydrate intake (40.2 ± 25.7%). Post-race weight was 3.6 ± 2.3% (range 0.3–5.7%) lower than pre-race weight, revealing a non-significant (p = 0.08) but practical relevant difference. In conclusion, runners were able to maintain a constant timing of food and fluid intake during competition but adjusted their food choices in the second half of the race. The large variation in fluid and carbohydrate intake indicate that recommendations need to be individualized to further optimize personal intakes
Real-Time Observations of Food and Fluid Timing During a 120 km Ultramarathon
Contains fulltext :
205865.pdf (publisher's version ) (Open Access
Dietary protein intake and distribution patterns of well-trained Dutch athletes
Dietary protein intake should be optimized in all athletes to ensure proper recovery and enhance the skeletal muscle adaptive response to exercise training. In addition to total protein intake, the use of specific proteincontaining food sources and the distribution of protein throughout the day are relevant for optimizing protein intake in athletes. In the present study, we examined the daily intake and distribution of various proteincontaining food sources in a large cohort of strength, endurance and team-sport athletes. Well-trained male (n=327) and female (n=226) athletes completed multiple web-based 24-hr dietary recalls over a 2-4 wk period. Total energy intake, the contribution of animal- and plant-based proteins to daily protein intake, and protein intake at six eating moments were determined. Daily protein intake averaged 108±33 and 90±24 g in men and women, respectively, which corresponded to relative intakes of 1.5±0.4 and 1.4±0.4 g/kg. Dietary protein intake was correlated with total energy intake in strength (r=0.71, p 1.2 g protein/kg/d, but the distribution throughout the day may be suboptimal to maximize the skeletal muscle adaptive response to training.</p
Dietary Protein Intake and Distribution Patterns of Well-Trained Dutch Athletes
Dietary protein intake should be optimized in all athletes to ensure proper recovery and enhance the skeletal muscle adaptive response to exercise training. In addition to total protein intake, the use of specific protein-containing food sources and the distribution of protein throughout the day are relevant for optimizing protein intake in athletes. In the present study, we examined the daily intake and distribution of various protein-containing food sources in a large cohort of strength, endurance and team-sport athletes. Well-trained male (n=327) and female (n=226) athletes completed multiple web-based 24-hr dietary recalls over a 2-4 wk period. Total energy intake, the contribution of animal- and plant-based proteins to daily protein intake, and protein intake at six eating moments were determined. Daily protein intake averaged 108±33 and 90±24 g in men and women, respectively, which corresponded to relative intakes of 1.5±0.4 and 1.4±0.4 g/kg. Dietary protein intake was correlated with total energy intake in strength (r=0.71, p 1.2 g protein/kg/d, but the distribution throughout the day may be suboptimal to maximize the skeletal muscle adaptive response to training