6 research outputs found

    Impaired neuromuscular transmission of the tibialis anterior in a rodent model of hypertonia

    No full text
    Early-onset hypertonia is characteristic of developmental neuromotor disorders, including cerebral palsy (CP). The spa transgenic mouse displays early-onset spasticity, abnormal gait, and motor impairments that are remarkably similar to symptoms of human CP. Previously, we showed that spa mice have fewer motor neurons innervating the tibialis anterior (TA). An expanded innervation ratio may result in increased susceptibility to neuromuscular transmission failure (NMTF). We assessed NMTF in an ex vivo TA muscle nerve preparation from spa and wild-type (WT) mice by comparing forces elicited by nerve versus muscle stimulation. TA muscle innervation ratio was assessed by counting the number of muscle fibers and dividing by the number of TA motor neurons. Muscle fiber cross-sectional areas were also assessed in the TA muscle. We observed that NMTF was immediately present in spa mice, increased with repetitive stimulation, and associated with increased innervation ratio. These changes were concomitant with reduced TA muscle fiber cross-sectional area in spa mice compared with WT. Early-onset hypertonia is associated with increased innervation ratio and impaired neuromuscular transmission. These disturbances may exacerbate the underlying gait abnormalities present in individuals with hypertonia.NEW & NOTEWORTHY Nerve-muscle interaction is poorly understood in the context of early-onset spasticity and hypertonia. In an animal model of early-onset spasticity, spa mice, we found a marked impairment of tibialis anterior neuromuscular transmission. This impairment is associated with an increased innervation ratio (mean number of muscle fibers innervated by a single motor neuron). These disturbances may underlie weakness and gait disturbances observed in individual with developmental hypertonia and spasticity

    Phrenic motor neuron loss in an animal model of early onset hypertonia

    No full text
    Phrenic motor neuron (PhMN) development in early onset hypertonia is poorly understood. Respiratory disorders are one of the leading causes of morbidity and mortality in individuals with early onset hypertonia, such as cerebral palsy (CP), but they are largely overshadowed by a focus on physical function in this condition. Furthermore, while the brain is the focus of CP research, motor neurons, via the motor unit and neurotransmitter signaling, are the targets in clinical interventions for hypertonia. Furthermore, critical periods of spinal cord and motor unit development also coincide with the timing that the supposed brain injury occurs in CP. Using an animal model of early-onset spasticity (spa mouse [B6.Cg-Glrbspa/J] with a glycine receptor mutation), we hypothesized that removal of effective glycinergic neurotransmitter inputs to PhMNs during development will result in fewer PhMNs and reduced PhMN somal size at maturity. Adult spa (Glrb-/-), and wild-type (Glrb+/+) mice underwent unilateral retrograde labeling of PhMNs via phrenic nerve dip in tetramethylrhodamine. After three days, mice were euthanized, perfused with 4% paraformaldehyde, and the spinal cord excised and processed for confocal imaging. Spa mice had ~30% fewer PhMNs (P = 0.005), disproportionately affecting larger PhMNs. Additionally, a ~22% reduction in PhMN somal surface area (P = 0.019), an 18% increase in primary dendrites (P < 0.0001), and 24% decrease in dendritic surface area (P = 0.014) were observed. Thus, there are fewer larger PhMNs in spa mice. Fewer and smaller PhMNs may contribute to impaired diaphragm neuromotor control and contribute to respiratory morbidity and mortality in conditions of early onset hypertonia. NEW & NOTEWORTHY Phrenic motor neuron (PhMN) development in early-onset hypertonia is poorly understood. Yet, respiratory disorders are a common cause of morbidity and mortality. In spa mice, an animal model of early-onset hypertonia, we found ~30% fewer PhMNs, compared with controls. This PhMN loss disproportionately affected larger PhMNs. Thus, the number and heterogeneity of the PhMN pool are decreased in spa mice, likely contributing to the hypertonia, impaired neuromotor control, and respiratory disorders

    Differences in lumbar motor neuron pruning in an animal model of early onset spasticity

    No full text
    Motor neuron (MN) development in early onset spasticity is poorly understood. For example, spastic cerebral palsy (sCP), the most common motor disability of childhood, is poorly predicted by brain imaging, yet research remains focused on the brain. By contrast, MNs, via the motor unit and neurotransmitter signaling, are the target of most therapeutic spasticity treatments and are the final common output of motor control. MN development in sCP is a critical knowledge gap as the late embryonic and postnatal periods are not only when the supposed brain injury occurs, but are critical times for spinal cord neuromotor development. Using an animal model of early onset spasticity (spa mouse [B6.Cg-Glrbspa/J] with a glycine (Gly) receptor mutation), we hypothesize that removal of effective glycinergic neurotransmitter inputs to MNs during development will influence MN pruning (including primary dendrites) and MN size. Spa (Glrb-/-) and wild-type (Glrb+/+) mice, ages 4-9 weeks, underwent unilateral retrograde labeling of the tibialis anterior muscle MNs via peroneal nerve dip in tetramethylrhodamine. After three days, mice were euthanized, perfused with 4% paraformaldehyde, and the spinal cord excised and processed for confocal imaging. Spa mice had ~61% fewer lumbar tibialis anterior MNs (
    corecore