104 research outputs found

    Regarding: Nicotinic acetylcholine receptors α7 and α9 modify tobacco smoke risk for multiple sclerosis.

    Get PDF
    This is a author manuscript of an article accepted for publication in Multiple Sclerosis Journal. Version of record is available online at Jacobs BM, Smets I, Giovannoni G, Noyce A, Jokubaitis V, Dobson R. Regarding: Nicotinic acetylcholine receptors α7 and α9 modify tobacco smoke risk for multiple sclerosis. Multiple Sclerosis Journal. December 2020. doi:10.1177/1352458520969941. Copyright (c) 2020. The Authors. doi:10.1177/135245852096994

    Pharmacoepidemiology and the Australian regional prevalence of multiple sclerosis

    Get PDF
    Background: Over some 50 years, field surveys have shown that the prevalence of multiple sclerosis (MS) increases with increasing distance from the equator in both the northern and the southern hemispheres. Such a latitudinal gradient has been found in field surveys of MS prevalence carried out at different times in various local regions of Australia

    Interferon beta treatment is a potent and targeted epigenetic modifier in multiple sclerosis

    Get PDF
    IntroductionMultiple Sclerosis (MS) has a complex pathophysiology that involves genetic and environmental factors. DNA methylation (DNAm) is one epigenetic mechanism that can reversibly modulate gene expression. Cell specific DNAm changes have been associated with MS, and some MS therapies such as dimethyl fumarate can influence DNAm. Interferon Beta (IFNβ), was one of the first disease modifying therapies in multiple sclerosis (MS). However, how IFNβ reduces disease burden in MS is not fully understood and little is known about the precise effect of IFNβ treatment on methylation.MethodsThe objective of this study was to determine the changes in DNAm associated with INFβ use, using methylation arrays and statistical deconvolutions on two separate datasets (total ntreated = 64, nuntreated = 285).ResultsWe show that IFNβ treatment in people with MS modifies the methylation profile of interferon response genes in a strong, targeted, and reproducible manner. Using these identified methylation differences, we constructed a methylation treatment score (MTS) that is an accurate discriminator between untreated and treated patients (Area under the curve = 0.83). This MTS is time-sensitive and in consistent with previously identified IFNβ treatment therapeutic lag. This suggests that methylation changes are required for treatment efficacy. Overrepresentation analysis found that IFNβ treatment recruits the endogenous anti-viral molecular machinery. Finally, statistical deconvolution revealed that dendritic cells and regulatory CD4+ T cells were most affected by IFNβ induced methylation changes.DiscussionIn conclusion, our study shows that IFNβ treatment is a potent and targeted epigenetic modifier in multiple sclerosis

    Emergence of human angiohematopoietic cells in normal development and from cultured embryonic stem cells

    Get PDF
    Human hematopoiesis proceeds transiently in the extraembryonic yolk sac and embryonic, then fetal liver before being stabilized in the bone marrow during the third month of gestation. In addition to this classic developmental sequence, we have previously shown that the aorta-gonad-mesonephros (AGM) embryonic territory produces stem cells for definitive hematopoiesis from 27 to 40 days of human development, through an intermediate blood-forming endothelium stage. These studies have relied on the use of traditional markers of human hematopoietic and endothelial cells. In addition, we have recently identified and characterized a novel surface molecule, BB9, which typifies the earliest founders of the human angiohematopoietic system. BB9, which was initially identified with a monoclonal antibody raised to Stro-1(+) bone marrow stromal cells, recognizes in the adult the most primitive Thy-1(+) CD133(+) Lin(−), non-obese diabetic—severe combined immunodeficiency disease (NOD–SCID) mouse engrating hematopoietic stem cells (HSCs). In the 3- to 4-week embryo,BB9expression typifies a subset of splanchnopleural mesodermal cells that migrate dorsally and colonize the ventral aspect of the aorta where they establish a population of hemogenic endothelial cells. We have indeed confirmed that hematopoietic potential in the human embryo, as assessed by long-term culture-initiating cell (LTC-IC) and SCID mouse reconstituting cell (SRC) activities, is confined to BB9-expressing cells. We have further validated these results in the model of human embryonic stem cells (hESCs) in which we have modeled, through the development of hematopoietic embryoid bodies (EBs), primitive and definitive hematopoieses. In this setting, we have documented the emergence of BB9(+) hemangioblast-like clonogenic angiohematopoietic progenitors that currently represent the earliest known founders of the human vascular and blood systems

    Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility

    Get PDF

    Genotype and Phenotype in Multiple Sclerosis—Potential for Disease Course Prediction?

    No full text
    Purpose of review This review will examine the current evidence that genetic and/or epigenetic variation may influence the multiple sclerosis (MS) clinical course, phenotype, and measures of MS severity including disability progression and relapse rate. Recent findings There is little evidence that MS clinical phenotype is under significant genetic control. There is increasing evidence that there may be genetic determinants of the rate of disability progression. However, studies that can analyse disability progression and take into account all the confounding variables such as treatment, clinical characteristics, and environmental factors are by necessity longitudinal, relatively small, and generally of short duration, and thus do not lend themselves to the assessment of hundreds of thousands of genetic variables obtained from GWAS. Despite this, there is recent evidence to support the association of genetic loci with relapse rate. Summary Recent progress suggests that genetic variations could be associated with disease severity, but not MS clinical phenotype, but these findings are not definitive and await replication. Pooling of study results, application of other genomic techniques including epigenomics, and analysis of biomarkers of progression could functionally validate putative severity markers

    Treatment of Women with Multiple Sclerosis Planning Pregnancy

    No full text

    Comparative Effectiveness and Cost-Effectiveness of Natalizumab and Fingolimod in Patients with Inadequate Response to Disease-Modifying Therapies in Relapsing-Remitting Multiple Sclerosis in the United Kingdom

    Get PDF
    Background: Patients with highly active relapsing-remitting multiple sclerosis inadequately responding to first-line therapies (interferon-based therapies, glatiramer acetate, dimethyl fumarate, and teriflunomide, known collectively as “BRACETD”) often switch to natalizumab or fingolimod. Objective: The aim was to estimate the comparative effectiveness of switching to natalizumab or fingolimod or within BRACETD using real-world data and to evaluate the cost-effectiveness of switching to natalizumab versus fingolimod using a United Kingdom (UK) third-party payer perspective. Methods: Real-world data were obtained from MSBase for patients relapsing on BRACETD in the year before switching to natalizumab or fingolimod or within BRACETD. Three-way-multinomial-propensity-score–matched cohorts were identified, and comparisons between treatment groups were conducted for annualised relapse rate (ARR) and 6-month–confirmed disability worsening (CDW6M) and improvement (CDI6M). Results were applied in a cost-effectiveness model over a lifetime horizon using a published Markov structure with health states based on the Expanded Disability Status Scale. Other model parameters were obtained from the UK MS Survey 2015, published literature, and publicly available UK sources. Results: The MSBase analysis found a significant reduction in ARR (rate ratio [RR] = 0.64; 95% confidence interval [CI] 0.57–0.72; p < 0.001) and an increase in CDI6M (hazard ratio [HR] = 1.67; 95% CI 1.30–2.15; p < 0.001) for switching to natalizumab compared with BRACETD. For switching to fingolimod, the reduction in ARR (RR = 0.91; 95% CI 0.81–1.03; p = 0.133) and increase in CDI6M (HR = 1.30; 95% CI 0.99–1.72; p = 0.058) compared with BRACETD were not significant. Switching to natalizumab was associated with a significant reduction in ARR (RR = 0.70; 95% CI 0.62–0.79; p < 0.001) and an increase in CDI6M (HR = 1.28; 95% CI 1.01–1.62; p = 0.040) compared to switching to fingolimod. No evidence of difference in CDW6M was found between treatment groups. Natalizumab dominated (higher quality-adjusted life-years [QALYs] and lower costs) fingolimod in the base-case cost-effectiveness analysis (0.453 higher QALYs and £20,843 lower costs per patient). Results were consistent across sensitivity analyses. Conclusions: This novel real-world analysis suggests a clinical benefit for therapy escalation to natalizumab versus fingolimod based on comparative effectiveness results, translating to higher QALYs and lower costs for UK patients inadequately responding to BRACETD
    corecore