2 research outputs found

    Simulation via instant messaging-Birmingham advance (SIMBA) model helped improve clinicians' confidence to manage cases in diabetes and endocrinology

    No full text
    Background: Simulation-based learning (SBL) has been increasingly used in both undergraduate and postgraduate medical training curricula. The aim of Simulation via Instant Messaging-Birmingham Advance (SIMBA) is to create a simple virtual learning environment to improve trainees' self-reported confidence in diabetes and Endocrinology. Methods: This study was done as part of the continuous professional development for Health Education England West Midlands speciality trainees in diabetes and Endocrinology. Standardized transcripts of anonymized real-life endocrinology (endocrine session) and diabetes cases (diabetes session) were used in the simulation model. Trainees interacted with moderators through WhatsApp® in this model. All cases were then discussed in detail by a consultant endocrinologist with reference to local, national and international guidelines. Trainee acceptance rate and improvement in their self-reported confidence levels post-simulation were assessed. Results: 70.8% (n = 17/24) and 75% (n = 18/24) strongly agreed the simulation session accommodated their personal learning style and the session was engaging. 66.7% (n = 16/24) strongly felt that the simulation was worth their time. In the endocrine session, there was a significant improvement in trainees' confidence in the management of craniopharyngioma (p = 0.0179) and acromegaly (p = 0.0025). There was a trend towards improved confidence levels to manage Cushing's disease and macroprolactinoma. In diabetes session, there was a significant improvement in trainees' confidence to interpret continuous glucose monitor readings (p = 0.01). There was a trend towards improvement for managing monogenic diabetes, hypoglycaemic unawareness and interpreting Libre readings. Overall, there was a significant improvement in trainees' confidence in managing cases that were discussed post-simulation. Conclusion: SIMBA is an effective learning model to improve trainees' confidence to manage various diabetes and endocrine case scenarios. More sessions with a variety of other speciality case scenarios are needed to further assess SIMBA's effectiveness and application in other areas of medical training.</p

    Diabetes mortality and trends before 25 years of age: an analysis of the Global Burden of Disease Study 2019

    No full text
    Background: Diabetes, particularly type 1 diabetes, at younger ages can be a largely preventable cause of death with the correct health care and services. We aimed to evaluate diabetes mortality and trends at ages younger than 25 years globally using data from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019. Methods: We used estimates of GBD 2019 to calculate international diabetes mortality at ages younger than 25 years in 1990 and 2019. Data sources for causes of death were obtained from vital registration systems, verbal autopsies, and other surveillance systems for 1990–2019. We estimated death rates for each location using the GBD Cause of Death Ensemble model. We analysed the association of age-standardised death rates per 100 000 population with the Socio-demographic Index (SDI) and a measure of universal health coverage (UHC) and described the variability within SDI quintiles. We present estimates with their 95% uncertainty intervals. Findings: In 2019, 16 300 (95% uncertainty interval 14 200 to 18 900) global deaths due to diabetes (type 1 and 2 combined) occurred in people younger than 25 years and 73·7% (68·3 to 77·4) were classified as due to type 1 diabetes. The age-standardised death rate was 0·50 (0·44 to 0·58) per 100 000 population, and 15 900 (97·5%) of these deaths occurred in low to high-middle SDI countries. The rate was 0·13 (0·12 to 0·14) per 100 000 population in the high SDI quintile, 0·60 (0·51 to 0·70) per 100 000 population in the low-middle SDI quintile, and 0·71 (0·60 to 0·86) per 100 000 population in the low SDI quintile. Within SDI quintiles, we observed large variability in rates across countries, in part explained by the extent of UHC (r2=0·62). From 1990 to 2019, age-standardised death rates decreased globally by 17·0% (−28·4 to −2·9) for all diabetes, and by 21·0% (–33·0 to −5·9) when considering only type 1 diabetes. However, the low SDI quintile had the lowest decline for both all diabetes (−13·6% [–28·4 to 3·4]) and for type 1 diabetes (−13·6% [–29·3 to 8·9]). Interpretation: Decreasing diabetes mortality at ages younger than 25 years remains an important challenge, especially in low and low-middle SDI countries. Inadequate diagnosis and treatment of diabetes is likely to be major contributor to these early deaths, highlighting the urgent need to provide better access to insulin and basic diabetes education and care. This mortality metric, derived from readily available and frequently updated GBD data, can help to monitor preventable diabetes-related deaths over time globally, aligned with the UN's Sustainable Development Targets, and serve as an indicator of the adequacy of basic diabetes care for type 1 and type 2 diabetes across nations. Funding: Bill & Melinda Gates Foundation
    corecore