3,550 research outputs found
Large Area Mapping at 850 Microns. V. Analysis of the Clump Distribution in the Orion A South Molecular Cloud
We present results from a 2300 arcmin^2 survey of the Orion A molecular cloud
at 450 and 850 micron using the Submillimetre Common-User Bolometer Array
(SCUBA) on the James Clerk Maxwell Telescope. The region mapped lies directly
south of the OMC1 cloud core and includes OMC4, OMC5, HH1/2, HH34, and L1641N.
We identify 71 independent clumps in the 850 micron map and compute size, flux,
and degree of central concentration in each. Comparison with isothermal,
pressure-confined, self-gravitating Bonnor-Ebert spheres implies that the
clumps have internal temperatures T_d ~ 22 +/- K and surface pressures log
(k^-1 P cm^-3 K) = 6.0 +/- 0.2. The clump masses span the range 0.3 - 22 Msun
assuming a dust temperature T_d ~ 20 K and a dust emissivity kappa_850 = 0.02
cm^2 g^-1. The distribution of clump masses is well characterized by a
power-law N(M) propto M^-alpha with alpha = 2.0 +/- 0.5 for M > 3.0 Msun,
indicating a clump mass function steeper than the stellar Initial Mass
Function. Significant incompleteness makes determination of the slope at lower
masses difficult. A comparison of the submillimeter emission map with an H_2
2.122 micron survey of the same region is performed. Several new Class 0
sources are revealed and a correlation is found between both the column density
and degree of concentration of the submillimeter sources and the likelihood of
coincident H_2 shock emission.Comment: 44 pages, 17 figures, accepted by Ap
Filamentary Star Formation in NGC 1275
We examine the star formation in the outer halo of NGC~1275, the central
galaxy in the Perseus cluster (Abell 426), using far ultraviolet and optical
images obtained with the Hubble Space Telescope. We have identified a
population of very young, compact star clusters with typical ages of a few Myr.
The star clusters are organised on multiple-kiloparsec scales. Many of these
star clusters are associated with "streaks" of young stars, the combination of
which has a cometary appearance. We perform photometry on the star clusters and
diffuse stellar streaks, and fit their spectral energy distributions to obtain
ages and masses. These young stellar populations appear to be normal in terms
of their masses, luminosities and cluster formation efficiency; <10% of the
young stellar mass is located in star clusters. Our data suggest star formation
is associated with the evolution of some of the giant gas filaments in NGC~1275
that become gravitationally unstable on reaching and possibly stalling in the
outer galaxy. The stellar streaks then could represent stars moving on
ballistic orbits in the potential well of the galaxy cluster. We propose a
model where star-forming filaments, switched on ~50~Myr ago and are currently
feeding the growth of the NGC~1275 stellar halo at a rate of ~2-3 solar masses
per year. This type of process may also build stellar halos and form isolated
star clusters in the outskirts of youthful galaxies.Comment: 15 pages, 10 figures, accepted for publication in MNRA
Large Area Mapping at 850 Microns. IV. Analysis of the Clump Distribution in the Orion B South Molecular Cloud
We present results from a survey of a 1300 arcmin^2 region of the Orion B
South molecular cloud, including NGC 2024, NGC 2023, and the Horsehead Nebula
(B33), obtained using the Submillimetre Common-User Bolometer Array (SCUBA) on
the James Clerk Maxwell Telescope. Submillimeter continuum observations at 450
microns and 850 microns are discussed. Using an automated algorithm, 57
discrete emission features (``clumps'') are identified in the 850 micron map.
The physical conditions within these clumps are investigated under the
assumption that the objects are in quasi-hydrostatic equilibrium. The best fit
dust temperature for the clumps is found to be T_d = 18 +/- 4 K, with the
exception of those associated with the few known far infrared sources residing
in NGC 2024. The latter internally heated sources are found to be much warmer.
In the region surrounding NGC 2023, the clump dust temperatures agree with
clump gas temperatures determined from molecular line excitation measurements
of the CO molecule. The bounding pressure on the clumps lies in the range
log(k^-1 P cm^3 K^-1) = 6.1 +/- 0.3. The cumulative mass distribution is steep
at the high mass end, as is the stellar Initial Mass Function. The distribution
flattens significantly at lower masses, with a turn-over around 3 -- 10 M_sun.Comment: 41 pages, 16 figures, accepted by Ap
Topos theory and `neo-realist' quantum theory
Topos theory, a branch of category theory, has been proposed as mathematical
basis for the formulation of physical theories. In this article, we give a
brief introduction to this approach, emphasising the logical aspects. Each
topos serves as a `mathematical universe' with an internal logic, which is used
to assign truth-values to all propositions about a physical system. We show in
detail how this works for (algebraic) quantum theory.Comment: 22 pages, no figures; contribution for Proceedings of workshop
"Recent Developments in Quantum Field Theory", MPI MIS Leipzig, July 200
The Large and Small Scale Structures of Dust in the Star-Forming Perseus Molecular Cloud
We present an analysis of ~3.5 square degrees of submillimetre continuum and
extinction data of the Perseus molecular cloud. We identify 58 clumps in the
submillimetre map and we identify 39 structures (`cores') and 11 associations
of structures (`super cores') in the extinction map. The cumulative mass
distributions of the submillimetre clumps and extinction cores have steep
slopes (alpha ~ 2 and 1.5 - 2 respectively), steeper than the Salpeter IMF
(alpha = 1.35), while the distribution of extinction super cores has a shallow
slope (alpha ~ 1). Most of the submillimetre clumps are well fit by stable
Bonnor-Ebert spheres with 10K < T < 19K and 5.5 < log_10(P_ext/k) < 6.0. The
clumps are found only in the highest column density regions (A_V > 5 - 7 mag),
although Bonnor-Ebert models suggest that we should have been able to detect
them at lower column densities if they exist. These observations provide a
stronger case for an extinction threshold than that found in analysis of less
sensitive observations of the Ophiuchus molecular cloud. The relationship
between submillimetre clumps and their parent extinction core has been
analyzed. The submillimetre clumps tend to lie offset from the larger
extinction peaks, suggesting the clumps formed via an external triggering
event, consistent with previous observations.Comment: 38 pages, 12 figures, accepted by Astrophysical Journal slight
changes to original due to a slight 3" error in the coordinates of the SCUBA
ma
Multi-Generational Star Formation in L1551
The L1551 molecular cloud contains two small clusters of Class 0 and I
protostars, as well as a halo of more evolved Class II and III YSOs, indicating
a current and at least one past burst of star formation. We present here new,
sensitive maps of 850 and 450 um dust emission covering most of the L1551
cloud, new CO J=2-1 data of the molecular cloud, and a new, deep, optical image
of [SII] emission. No new Class 0/I YSOs were detected. Compact sub-millimetre
emitters are concentrated in two sub-clusters: IRS5 and L1551NE, and the
HL~Tauri group. Both stellar groups show significant extended emission and
outflow/jet activity. A jet, terminating at HH 265 and with a very weak
associated molecular outflow, may originate from LkHa 358, or from a binary
companion to another member of the HL Tauri group. Several Herbig Haro objects
associated with IRS5/NE were clearly detected in the sub-mm, as were faint
ridges of emission tracing outflow cavity walls. We confirm a large-scale
molecular outflow originating from NE parallel to that from IRS5, and suggest
that the "hollow shell" morphology is more likely due to two interacting
outflows. We confirm the presence of a prestellar core (L1551-MC) of mass 2-3
Mo north-west of IRS5. The next generation cluster may be forming in this core.
The L1551 cloud appears cometary in morphology, and appears to be illuminated
and eroded from the direction of Orion, perhaps explaining the multiple
episodes of star formation in this cloud. The full paper (including figures)
can be downloaded at http://www.jach.hawaii.edu/~gms/l1551/l1551-apj641.pdf, or
viewed at http://www.jach.hawaii.edu/~gms/l1551/.Comment: Accepted for publication in The Astrophysical Journal, April 2006
(vol. 641). 27 pages, 17 figure
A Topos Foundation for Theories of Physics: I. Formal Languages for Physics
This paper is the first in a series whose goal is to develop a fundamentally
new way of constructing theories of physics. The motivation comes from a desire
to address certain deep issues that arise when contemplating quantum theories
of space and time. Our basic contention is that constructing a theory of
physics is equivalent to finding a representation in a topos of a certain
formal language that is attached to the system. Classical physics arises when
the topos is the category of sets. Other types of theory employ a different
topos. In this paper we discuss two different types of language that can be
attached to a system, S. The first is a propositional language, PL(S); the
second is a higher-order, typed language L(S). Both languages provide deductive
systems with an intuitionistic logic. The reason for introducing PL(S) is that,
as shown in paper II of the series, it is the easiest way of understanding, and
expanding on, the earlier work on topos theory and quantum physics. However,
the main thrust of our programme utilises the more powerful language L(S) and
its representation in an appropriate topos.Comment: 36 pages, no figure
The IC1396N proto-cluster at a scale of 250 AU
We investigate the mm-morphology of IC1396N with unprecedented spatial
resolution to analyze its dust and molecular gas properties, and draw
comparisons with objects of similar mass. We have carried out sensitive
observations in the most extended configurations of the IRAM Plateau de Bure
interferometer, to map the thermal dust emission at 3.3 and 1.3mm, and the
emission from the =13 hyperfine transitions of methyl cyanide
(CHCN). We unveil the existence of a sub-cluster of hot cores in IC1396N,
distributed in a direction perpendicular to the emanating outflow. The cores
are embedded in a common envelope of extended and diffuse dust emission. We
find striking differences in the dust properties of the cores ( 0)
and the surrounding envelope ( 1), very likely testifying to
differences in the formation and processing of dust material. The CHCN
emission peaks towards the most massive hot core and is marginally extended in
the outflow direction
Radiative Transfer in Prestellar Cores: A Monte Carlo Approach
We use our Monte Carlo radiative transfer code to study non-embedded
prestellar cores and cores that are embedded at the centre of a molecular
cloud. Our study indicates that the temperature inside embedded cores is lower
than in isolated non-embedded cores, and generally less than 12 K, even when
the cores are surrounded by an ambient cloud of small visual extinction (Av~5).
Our study shows that the best wavelength region to observe embedded cores is
between 400 and 500 microns, where the core is quite distinct from the
background. We also predict that very sensitive observations (~1-3 MJy/sr) at
170-200 microns can be used to estimate how deeply a core is embedded in its
parent molecular cloud. Finally, we present preliminary results of asymmetric
models of non-embedded cores.Comment: 8 pages, 15 figures, to appear in the conference proceedings of "Open
Issues in Local Star Formation and Early Stellar Evolution", held in Ouro
Preto (Brazil), April 5-10, 200
- âŠ