309 research outputs found

    The power of co-ordinate transformations in dynamical interpretations of Galactic structure

    Get PDF
    GaiaGaia DR2 has provided an unprecedented wealth of information about the positions and motions of stars in our Galaxy, and has highlighted the degree of disequilibria in the disc. As we collect data over a wider area of the disc it becomes increasingly appealing to start analysing stellar actions and angles, which specifically label orbit space, instead of their current phase space location. Conceptually, while xˉ\bar{x} and vˉ\bar{v} tell us about the potential and local interactions, grouping in action puts together stars that have similar frequencies and hence similar responses to dynamical effects occurring over several orbits. Grouping in actions and angles refines this further to isolate stars which are travelling together through space and hence have shared histories. Mixing these coordinate systems can confuse the interpretation. For example, it has been suggested that by moving stars to their guiding radius, the Milky Way spiral structure is visible as ridge-like overdensities in the GaiaGaia data \citep{Khoperskov+19b}. However, in this work, we show that these features are in fact the known kinematic moving groups, both in the Lz−ϕL_z-\phi and the vR−vϕv_{\mathrm{R}}-v_{\phi} planes. Using simulations we show how this distinction will become even more important as we move to a global view of the Milky Way. As an example, we show that the radial velocity wave seen in the Galactic disc in GaiaGaia and APOGEE should become stronger in the action-angle frame, and that it can be reproduced by transient spiral structure.Comment: 12 pages, 10 Figure

    Cutting Edge: Suppression of GM-CSF Expression in Murine and Human T Cells by IL-27:suppression of GM-CSF expression in murine and human T cells by IL-27

    Get PDF
    GM-CSF is a potent pro-inflammatory cytokine that plays a pathogenic role in the CNS inflammatory disease, EAE. As IL-27 ameliorates EAE, we hypothesised that IL-27 suppresses GM-CSF expression by T cells. We found that IL-27 suppressed GM-CSF expression in CD4(+) and CD8(+) T cells in splenocyte and purified T cell cultures. IL-27 suppressed GM-CSF in Th1, but not Th17 cells. IL-27 also suppressed GM-CSF expression by human T cells in non-polarised and Th1 but not Th17 polarised PBMC cultures. In vivo, IL-27p28 deficiency resulted in increased GM-CSF expression by CNS infiltrating T cells during Toxoplasma gondii infection. While in vitro suppression of GM-CSF by IL-27 was independent of IL-2 suppression, IL-10 up-regulation or SOCS3 signalling, we observed that IL-27-driven suppression of GM-CSF was STAT1 dependent. Our findings demonstrate that IL-27 is a robust negative regulator of GM-CSF expression in T cells which likely inhibits T cell pathogenicity in CNS inflammation

    Chemical Cartography of the Sagittarius Stream with Gaia

    Full text link
    The stellar stream connected to the Sagittarius (Sgr) dwarf galaxy is the most massive tidal stream that has been mapped in the Galaxy, and is the dominant contributor to the outer stellar halo of the Milky Way. We present metallicity maps of the Sgr stream, using 34,240 red giant branch stars with inferred metallicities from Gaia BP/RP spectra. This sample is larger than previous samples of Sgr stream members with chemical abundances by an order of magnitude. We measure metallicity gradients with respect to Sgr stream coordinates (Λ,B)(\Lambda, B), and highlight the gradient in metallicity with respect to stream latitude coordinate BB, which has not been observed before. We find ∇[M/H]=−2.48±0.08×10−2\nabla \mathrm{[M/H]} = -2.48 \pm 0.08 \times 10^{-2} dex/deg above the stream track (B>B0B>B_0 where B0=1.5B_0=1.5 deg is the latitude of the Sgr remnant) and ∇[M/H]=−2.02±0.08×10−2\nabla \mathrm{[M/H]} =- 2.02 \pm 0.08 \times 10^{-2} dex/deg below the stream track (B<B0B<B_0). By painting metallicity gradients onto a tailored N-body simulation of the Sgr stream, we find that the observed metallicities in the stream are consistent with an initial radial metallicity gradient in the Sgr dwarf galaxy of ∌−0.1\sim -0.1 to −0.2-0.2 dex/kpc, well within the range of observed metallicity gradients in Local Group dwarf galaxies. Our results provide novel observational constraints for the internal structure of the dwarf galaxy progenitor of the Sgr stream. Leveraging new large datasets in conjunction with tailored simulations, we can connect the present day properties of disrupted dwarfs in the Milky Way to their initial conditions.Comment: 20 pages, 12 figures. Submitted to ApJ; comments welcome

    The relationship between body positioning, muscle activity, and spinal kinematics in cyclists with and without low back pain

    Get PDF
    Objectives: To determine if relationships exist between body positioning, spinal kinematics, and muscle activity in active cyclists with non-traumatic LBP. To explore variations in optimal positioning and bike set up in order to address variables associated with LBP in the physical therapy clinic.https://jdc.jefferson.edu/dptcapstones/1003/thumbnail.jp

    Controlling <i>In Planta</i> Gold Nanoparticle Synthesis and Size for Catalysis

    Get PDF
    Gold nanoparticles (Au-NPs) are used as catalysts for a diverse range of industrial applications. Currently, Au-NPs are synthesized chemically, but studies have shown that plants fed Au deposit, this element naturally as NPs within their tissues. The resulting plant material can be used to make biomass-derived catalysts. In vitro studies have shown that the addition of specific, short (∌10 amino acid) peptide/s to solutions can be used to control the NP size and shape, factors that can be used to optimize catalysts for different processes. Introducing these peptides into the model plant species, Arabidopsis thaliana (Arabidopsis), allows us to regulate the diameter of nanoparticles within the plant itself, consequently influencing the catalytic performance in the resulting pyrolyzed biomass. Furthermore, we show that overexpressing the copper and gold COPPER TRANSPORTER 2 (COPT2) in Arabidopsi sincreases the uptake of these metals. Adding value to the Au-rich biomass offers the potential to make plant-based remediation and stabilization of mine wastes financially feasible. Thus, this study represents a significant step toward engineering plants for the sustainable recovery of finite and valuable elements from our environment

    Photometric Redshifts of Quasars

    Get PDF
    We demonstrate that the design of the Sloan Digital Sky Survey (SDSS) filter system and the quality of the SDSS imaging data are sufficient for determining accurate and precise photometric redshifts (``photo-z''s) of quasars. Using a sample of 2625 quasars, we show that photo-z determination is even possible for z<=2.2 despite the lack of a strong continuum break that robust photo-z techniques normally require. We find that, using our empirical method on our sample of objects known to be quasars, approximately 70% of the photometric redshifts are correct to within delta z = 0.2; the fraction of correct photometric redshifts is even better for z>3. The accuracy of quasar photometric redshifts does not appear to be dependent upon magnitude to nearly 21st magnitude in i'. Careful calibration of the color-redshift relation to 21st magnitude may allow for the discovery of on the order of 10^6 quasars candidates in addition to the 10^5 quasars that the SDSS will confirm spectroscopically. We discuss the efficient selection of quasar candidates from imaging data for use with the photometric redshift technique and the potential scientific uses of a large sample of quasar candidates with photometric redshifts.Comment: 29 pages, 8 figures, submitted to A

    Virtual teaching kitchen classes and cardiovascular disease prevention counselling among medical trainees

    Get PDF
    Background: Hands-on culinary medicine education for medical trainees has emerged as a promising tool for cardiovascular health promotion. Purpose: To determine whether virtual culinary medicine programming associates with Mediterranean diet (MedDiet) adherence and lifestyle medicine competencies among medical trainees across the USA. Method: A total of 1433 medical trainees across 19 sites over a 12-month period were included. The Cooking for Health Optimisation with Patients-Medical Trainees survey composed of 61 questions regarding demographics, nutritional attitudes, dietary habits including MedDiet score and lifestyle medicine counselling competencies. Multivariable logistic regression assessed the association of virtual culinary medicine education with MedDiet intake and nutritional attitudes. Results: There were 519 medical trainees who participated in virtual culinary medicine education and 914 medical trainees who participated in their standard nutrition curricula. More than one-half of participants were women (n=759) and the mean age was 27 years old. Compared with students enrolled in traditional nutrition curricula, participants in virtual culinary medicine education were 37% more likely to adhere to MedDiet guidelines for fruit intake (OR 1.37, 95% CI 1.03 to 1.83, p=0.03). Virtual culinary medicine education was associated with higher proficiency in lifestyle medicine counselling categories, notably recommendations involving fibre (OR 4.03; 95% CI 3.05 to 5.34), type 2 diabetes prevention (OR 4.69; 95% CI 3.51 to 6.27) and omega fatty acids (OR 5.21; 95% CI 3.87 to 7.02). Virtual culinary medicine education had a similar, although higher magnitude association with MedDiet counselling competency (OR 5.73, 95% CI 4.26 to 7.70) when compared with historical data previously reported using hands-on, in-person culinary medicine courseware (OR 4.97, 95% CI 3.89 to 6.36). Conclusions: Compared with traditional nutritional educational curricula, virtual culinary medicine education is associated with higher MedDiet adherence and lifestyle medicine counselling competencies among medical trainees. Both virtual and hands-on culinary medicine education may be useful for cardiovascular health promotion

    The challenges of estimating the distribution of flight heights from telemetry or altimetry data

    Get PDF
    AbstractBackgroundGlobal positioning systems (GPS) and altimeters are increasingly used to monitor vertical space use by aerial species, a key aspect of their ecological niche, that we need to know to manage our own use of the airspace, and to protect those species. However, there are various sources of error in flight height data (“height” above ground, as opposed to “altitude” above a reference like the sea level). First the altitude is measured with a vertical error from the devices themselves. Then there is error in the ground elevation below the tracked animals, which translates into error in flight height computed as the difference between altitude and ground elevation. Finally, there is error in the horizontal position of the animals, which translates into error in the predicted ground elevation below the animals. We used controlled field trials, simulations, and the reanalysis of raptor case studies with state-space models to illustrate the effect of improper error management.ResultsErrors of a magnitude of 20 m appear in benign conditions for barometric altimeters and GPS vertical positioning (expected to be larger in more challenging context). These errors distort the shape of the distribution of flight heights, inflate the variance in flight height, bias behavioural state assignments, correlations with environmental covariates, and airspace management recommendations. Improper data filters such as removing all negative flight height records introduce several biases in the remaining dataset, and preclude the opportunity to leverage unambiguous errors to help with model fitting. Analyses that ignore the variance around the mean flight height, e.g., those based on linear models of flight height, and those that ignore the variance inflation caused by telemetry errors, lead to incorrect inferences.ConclusionThe state-space modelling framework, now in widespread use by ecologists and increasingly often automatically implemented within on-board GPS data processing algorithms, makes it possible to fit flight models directly to the output of GPS devices, with minimal data pre-selection, and to analyse the full distribution of flight heights, not just the mean. In addition to basic research about aerial niches, behaviour quantification, and environmental interactions, we highlight the applied relevance of our recommendations for airspace management and the conservation of aerial wildlife.</jats:sec

    Canvass: a crowd-sourced, natural-product screening library for exploring biological space

    Full text link
    NCATS thanks Dingyin Tao for assistance with compound characterization. This research was supported by the Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH). R.B.A. acknowledges support from NSF (CHE-1665145) and NIH (GM126221). M.K.B. acknowledges support from NIH (5R01GM110131). N.Z.B. thanks support from NIGMS, NIH (R01GM114061). J.K.C. acknowledges support from NSF (CHE-1665331). J.C. acknowledges support from the Fogarty International Center, NIH (TW009872). P.A.C. acknowledges support from the National Cancer Institute (NCI), NIH (R01 CA158275), and the NIH/National Institute of Aging (P01 AG012411). N.K.G. acknowledges support from NSF (CHE-1464898). B.C.G. thanks the support of NSF (RUI: 213569), the Camille and Henry Dreyfus Foundation, and the Arnold and Mabel Beckman Foundation. C.C.H. thanks the start-up funds from the Scripps Institution of Oceanography for support. J.N.J. acknowledges support from NIH (GM 063557, GM 084333). A.D.K. thanks the support from NCI, NIH (P01CA125066). D.G.I.K. acknowledges support from the National Center for Complementary and Integrative Health (1 R01 AT008088) and the Fogarty International Center, NIH (U01 TW00313), and gratefully acknowledges courtesies extended by the Government of Madagascar (Ministere des Eaux et Forets). O.K. thanks NIH (R01GM071779) for financial support. T.J.M. acknowledges support from NIH (GM116952). S.M. acknowledges support from NIH (DA045884-01, DA046487-01, AA026949-01), the Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program (W81XWH-17-1-0256), and NCI, NIH, through a Cancer Center Support Grant (P30 CA008748). K.N.M. thanks the California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board for support. B.T.M. thanks Michael Mullowney for his contribution in the isolation, elucidation, and submission of the compounds in this work. P.N. acknowledges support from NIH (R01 GM111476). L.E.O. acknowledges support from NIH (R01-HL25854, R01-GM30859, R0-1-NS-12389). L.E.B., J.K.S., and J.A.P. thank the NIH (R35 GM-118173, R24 GM-111625) for research support. F.R. thanks the American Lebanese Syrian Associated Charities (ALSAC) for financial support. I.S. thanks the University of Oklahoma Startup funds for support. J.T.S. acknowledges support from ACS PRF (53767-ND1) and NSF (CHE-1414298), and thanks Drs. Kellan N. Lamb and Michael J. Di Maso for their synthetic contribution. B.S. acknowledges support from NIH (CA78747, CA106150, GM114353, GM115575). W.S. acknowledges support from NIGMS, NIH (R15GM116032, P30 GM103450), and thanks the University of Arkansas for startup funds and the Arkansas Biosciences Institute (ABI) for seed money. C.R.J.S. acknowledges support from NIH (R01GM121656). D.S.T. thanks the support of NIH (T32 CA062948-Gudas) and PhRMA Foundation to A.L.V., NIH (P41 GM076267) to D.S.T., and CCSG NIH (P30 CA008748) to C.B. Thompson. R.E.T. acknowledges support from NIGMS, NIH (GM129465). R.J.T. thanks the American Cancer Society (RSG-12-253-01-CDD) and NSF (CHE1361173) for support. D.A.V. thanks the Camille and Henry Dreyfus Foundation, the National Science Foundation (CHE-0353662, CHE-1005253, and CHE-1725142), the Beckman Foundation, the Sherman Fairchild Foundation, the John Stauffer Charitable Trust, and the Christian Scholars Foundation for support. J.W. acknowledges support from the American Cancer Society through the Research Scholar Grant (RSG-13-011-01-CDD). W.M.W.acknowledges support from NIGMS, NIH (GM119426), and NSF (CHE1755698). A.Z. acknowledges support from NSF (CHE-1463819). (Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH); CHE-1665145 - NSF; CHE-1665331 - NSF; CHE-1464898 - NSF; RUI: 213569 - NSF; CHE-1414298 - NSF; CHE1361173 - NSF; CHE1755698 - NSF; CHE-1463819 - NSF; GM126221 - NIH; 5R01GM110131 - NIH; GM 063557 - NIH; GM 084333 - NIH; R01GM071779 - NIH; GM116952 - NIH; DA045884-01 - NIH; DA046487-01 - NIH; AA026949-01 - NIH; R01 GM111476 - NIH; R01-HL25854 - NIH; R01-GM30859 - NIH; R0-1-NS-12389 - NIH; R35 GM-118173 - NIH; R24 GM-111625 - NIH; CA78747 - NIH; CA106150 - NIH; GM114353 - NIH; GM115575 - NIH; R01GM121656 - NIH; T32 CA062948-Gudas - NIH; P41 GM076267 - NIH; R01GM114061 - NIGMS, NIH; R15GM116032 - NIGMS, NIH; P30 GM103450 - NIGMS, NIH; GM129465 - NIGMS, NIH; GM119426 - NIGMS, NIH; TW009872 - Fogarty International Center, NIH; U01 TW00313 - Fogarty International Center, NIH; R01 CA158275 - National Cancer Institute (NCI), NIH; P01 AG012411 - NIH/National Institute of Aging; Camille and Henry Dreyfus Foundation; Arnold and Mabel Beckman Foundation; Scripps Institution of Oceanography; P01CA125066 - NCI, NIH; 1 R01 AT008088 - National Center for Complementary and Integrative Health; W81XWH-17-1-0256 - Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program; P30 CA008748 - NCI, NIH, through a Cancer Center Support Grant; California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board; American Lebanese Syrian Associated Charities (ALSAC); University of Oklahoma Startup funds; 53767-ND1 - ACS PRF; PhRMA Foundation; P30 CA008748 - CCSG NIH; RSG-12-253-01-CDD - American Cancer Society; RSG-13-011-01-CDD - American Cancer Society; CHE-0353662 - National Science Foundation; CHE-1005253 - National Science Foundation; CHE-1725142 - National Science Foundation; Beckman Foundation; Sherman Fairchild Foundation; John Stauffer Charitable Trust; Christian Scholars Foundation)Published versionSupporting documentatio
    • 

    corecore