61 research outputs found

    Neural signatures of task-related fluctuations in auditory attention change with age

    Get PDF
    Listening in everyday life requires attention to be deployed dynamically – when listening is expected to be difficult and when relevant information is expected to occur – to conserve mental resources. Conserving mental resources may be particularly important for older adults who often experience difficulties understanding speech. We use electro- and magnetoencephalography to investigate the neural and behavioral mechanics of dynamic attention regulation during listening and the effects that aging may have on these. We show that neural alpha oscillatory activity indicates when in time attention is deployed (Experiment 1) and that deployment depends on listening difficulty (Experiment 2). Older adults also show successful attention regulation, although younger adults appear to utilize timing information a bit differently compared to older adults. We further show that the recruited brain regions differ between age groups. Superior parietal cortex is involved in attention regulation in younger adults, whereas posterior temporal cortex is more involved in older adults (Experiment 3). This difference in the sources of alpha activity across age groups was only observed when a task was performed, and not for alpha activity during resting-state recordings (Experiment S1). In sum, our study suggests that older adults employ different neural control strategies compared to younger adults to regulate attention in time under listening challenges

    A statistical atlas-based technique for automatic segmentation of the first Heschls gyrus in human auditory cortex from MR images

    Get PDF
    Abstract-We present an automatic method for the segmentation of the first transverse temporal gyrus of Heschl (HG), the morphological marker for primary auditory cortex in humans. The proposed technique utilizes a statistical anatomical atlas of the gyrus, generated from a set of training samples using principal component analysis. The training set consists of MRI data from 12 subjects with the corresponding Heschl's gyri manually labeled in each hemisphere (separate atlases were generated for each hemisphere). We used a leave-oneout approach to automatically segment Heschl's gyri in both hemispheres from the MR image data using generated atlases. We assessed the accuracy of this atlas-based technique by using it to segment the HG region from several test cases and finding the overlap between the segmented and labeled HG regions. Results demonstrated more than 75% and 83% accuracy in the extraction of the HG volumes in the left and right hemispheres, respectively. It is expected that the proposed tool can be adapted to extract other anatomical regions in the brain

    An International Multi-Center Evaluation of Type 5 Long QT Syndrome: A Low Penetrant Primary Arrhythmic Condition.

    Get PDF
    Background: Insight into type 5 long QT syndrome (LQT5) has been limited to case reports and small family series. Improved understanding of the clinical phenotype and genetic features associated with rare KCNE1 variants implicated in LQT5 was sought through an international multi-center collaboration. Methods: Patients with either presumed autosomal dominant LQT5 (N = 229) or the recessive Type 2 Jervell and Lange-Nielsen syndrome (JLNS2, N = 19) were enrolled from 22 genetic arrhythmia clinics and 4 registries from 9 countries. KCNE1 variants were evaluated for ECG penetrance (defined as QTc > 460ms on presenting ECG) and genotype-phenotype segregation. Multivariable Cox regression was used to compare the associations between clinical and genetic variables with a composite primary outcome of definite arrhythmic events, including appropriate implantable cardioverter-defibrillator shocks, aborted cardiac arrest, and sudden cardiac death. Results: A total of 32 distinct KCNE1 rare variants were identified in 89 probands and 140 genotype positive family members with presumed LQT5 and an additional 19 JLNS2 patients. Among presumed LQT5 patients, the mean QTc on presenting ECG was significantly longer in probands (476.9 ± 38.6ms) compared to genotype positive family members (441.8 ± 30.9ms, p<0.001). ECG penetrance for heterozygous genotype positive family members was 20.7% (29/140). A definite arrhythmic event was experienced in 16.9% (15/89) of heterozygous probands in comparison with 1.4% (2/140) of family members (adjusted hazard ratio [HR]: 11.6, 95% confidence interval [CI]: 2.6-52.2; p=0.001). Event incidence did not differ significantly for JLNS2 patients relative to the overall heterozygous cohort (10.5% [2/19]; HR: 1.7, 95% CI: 0.3-10.8, p=0.590). The cumulative prevalence of the 32 KCNE1 variants in the Genome Aggregation Database (gnomAD), which is a human database of exome and genome sequencing data from now over 140,000 individuals, was 238-fold greater than the anticipated prevalence of all LQT5 combined (0.238% vs. 0.001%). Conclusions: The present study suggests that putative/confirmed loss-of-function KCNE1 variants predispose to QT-prolongation, however the low ECG penetrance observed suggests they do not manifest clinically in the majority of individuals, aligning with the mild phenotype observed for JLNS2 patients

    Flecainide Is Associated With a Lower Incidence of Arrhythmic Events in a Large Cohort of Patients With Catecholaminergic Polymorphic Ventricular Tachycardia

    Get PDF
    BACKGROUND: In severely affected patients with catecholaminergic polymorphic ventricular tachycardia, beta-blockers are often insufficiently protective. The purpose of this study was to evaluate whether flecainide is associated with a lower incidence of arrhythmic events (AEs) when added to beta-blockers in a large cohort of patients with catecholaminergic polymorphic ventricular tachycardia. METHODS: From 2 international registries, this multicenter case cross-over study included patients with a clinical or genetic diagnosis of catecholaminergic polymorphic ventricular tachycardia in whom flecainide was added to beta-blocker therapy. The study period was defined as the period in which background therapy (ie, beta-blocker type [beta1-selective or nonselective]), left cardiac sympathetic denervation, and implantable cardioverter defibrillator treatment status, remained unchanged within individual patients and was divided into pre-flecainide and on-flecainide periods. The primary end point was AEs, defined as sudden cardiac death, sudden cardiac arrest, appropriate implantable cardioverter defibrillator shock, and arrhythmic syncope. The association of flecainide with AE rates was assessed using a generalized linear mixed model assuming negative binomial distribution and random effects for patients. RESULTS: A total of 247 patients (123 [50%] females; median age at start of flecainide, 18 years [interquartile range, 14-29]; median flecainide dose, 2.2 mg/kg per day [interquartile range, 1.7-3.1]) were included. At baseline, all patients used a beta-blocker, 70 (28%) had an implantable cardioverter defibrillator, and 21 (9%) had a left cardiac sympathetic denervation. During a median pre-flecainide follow-up of 2.1 years (interquartile range, 0.4-7.2), 41 patients (17%) experienced 58 AEs (annual event rate, 5.6%). During a median on-flecainide follow-up of 2.9 years (interquartile range, 1.0-6.0), 23 patients (9%) experienced 38 AEs (annual event rate, 4.0%). There were significantly fewer AEs after initiation of flecainide (incidence rate ratio, 0.55 [95% CI, 0.38-0.83]; P=0.007). Among patients who were symptomatic before diagnosis or during the pre-flecainide period (n=167), flecainide was associated with significantly fewer AEs (incidence rate ratio, 0.49 [95% CI, 0.31-0.77]; P=0.002). Among patients with ≥1 AE on beta-blocker therapy (n=41), adding flecainide was also associated with significantly fewer AEs (incidence rate ratio, 0.25 [95% CI, 0.14-0.45]; P&lt;0.001). CONCLUSIONS: For patients with catecholaminergic polymorphic ventricular tachycardia, adding flecainide to beta-blocker therapy was associated with a lower incidence of AEs in the overall cohort, in symptomatic patients, and particularly in patients with breakthrough AEs while on beta-blocker therapy.</p

    A neural signature of regularity in sound is reduced in older adults

    No full text
    Sensitivity to repetitions in sound amplitude and frequency is crucial for sound perception. As with other aspects of sound processing, sensitivity to such patterns may change with age, and may help explain some age-related changes in hearing such as segregating speech from background sound. We recorded magnetoencephalography to characterize differences in the processing of sound patterns between younger and older adults. We presented tone sequences that either contained a pattern (made of a repeated set of tones) or did not contain a pattern. We show that auditory cortex in older, compared to younger, adults is hyperresponsive to sound onsets, but that sustained neural activity in auditory cortex, indexing the processing of a sound pattern, is reduced. Hence, the sensitivity of neural populations in auditory cortex fundamentally differs between younger and older individuals, overresponding to sound onsets, while underresponding to patterns in sounds. This may help to explain some age-related changes in hearing such as increased sensitivity to distracting sounds and difficulties tracking speech in the presence of other sound

    Sustained responses and neural synchronization to amplitude and frequency modulation in sound change with age

    No full text
    Perception of speech requires sensitivity to features, such as amplitude and frequency modulations, that are often temporally regular. Previous work suggests age-related changes in neural responses to temporally regular features, but little work has focused on age differences for different types of modulations. We recorded magnetoencephalography in younger (21–33 years) and older adults (53–73 years) to investigate age differences in neural responses to slow (2-6 Hz sinusoidal and non-sinusoidal) modulations in amplitude, frequency, or combined amplitude and frequency. Audiometric pure-tone average thresholds were elevated in older compared to younger adults, indicating subclinical hearing impairment in the recruited older-adult sample. Neural responses to sound onset (independent of temporal modulations) were increased in magnitude in older compared to younger adults, suggesting hyperresponsivity and a loss of inhibition in the aged auditory system. Analyses of neural activity to modulations revealed greater neural synchronization with amplitude, frequency, and combined amplitude-frequency modulations for older compared to younger adults. This potentiated response generalized across different degrees of temporal regularity (sinusoidal and non-sinusoidal), although neural synchronization was generally lower for non-sinusoidal modulation. Despite greater synchronization, sustained neural activity was reduced in older compared to younger adults for sounds modulated both sinusoidally and non-sinusoidally in frequency. Our results suggest age differences in the sensitivity of the auditory system to features present in speech and other natural sounds
    • …
    corecore