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Abstract— We present an automatic method for the seg-
mentation of the first transverse temporal gyrus of Heschl
(HG), the morphological marker for primary auditory cortex in
humans. The proposed technique utilizes a statistical anatomical
atlas of the gyrus, generated from a set of training samples
using principal component analysis. The training set consists
of MRI data from 12 subjects with the corresponding Heschl’s
gyri manually labeled in each hemisphere (separate atlases
were generated for each hemisphere). We used a leave-one-
out approach to automatically segment Heschl’s gyri in both
hemispheres from the MR image data using generated atlases.
We assessed the accuracy of this atlas-based technique by using
it to segment the HG region from several test cases and finding
the overlap between the segmented and labeled HG regions.
Results demonstrated more than 75% and 83% accuracy in the
extraction of the HG volumes in the left and right hemispheres,
respectively. It is expected that the proposed tool can be adapted
to extract other anatomical regions in the brain.

I. INTRODUCTION

Human primary auditory cortex (PAC) is located on the
superior surface of the temporal lobe, buried in the Sylvian
fissure. Anatomical and functional studies indicate that PAC
is found on the middle portion of the transverse temporal
gyrus of Heschl (HG) as shown in Fig. 1, on the anteriormost
gyrus, if more than one is present [1], [2]. PAC is the first
cortical processing area for sound, and its functional prop-
erties are therefore of great relevance to our understanding
of communication and hearing. The morphology of HG has
been described to be highly variable among individuals in
terms of both geometry and topology, and it may appear as
single, or with two or more folds [3]. Such complex inter-
subject variability can make it hard to observe reliable func-
tional/anatomical correspondence in neuroimaging studies.
HG can be identified in MR scans through the use of a pre-
labeled brain [4] or probabilistic atlases [5]. However, the
best these atlases can do is to specify the likelihood of any
voxel in a spatially standardized image being on HG - they
do not actually segment the image into HG and non-HG
voxels.
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Fig. 1. Cross-sectional views of transverse temporal gyrus of Heschl.

Several techniques for statistical modeling of shape vari-
ability have been proposed [6], [7] and successfully applied
for various image processing tasks such as segmentation [8],
[9]. The construction of three-dimensional (3D) statistical
shape models of different regions in human brain, however,
is a challenging task due to the complexity of identify-
ing the corresponding points on different training shapes.
Most techniques rely on extracting common landmarks from
every training set, which is a time consuming and tedious
procedure. To overcome this problem, Rueckertet al. [10]
proposed a new technique for the construction of a 3D
statistical deformation model using human brain MR images.
Their proposed technique inputs intensity image volumes
as the training set for atlas construction. The correspon-
dence is achieved using a non-rigid registration of intensity
volumes. However, relying solely on intensity to find the
correspondence is not sufficient for atlas construction of
relatively small and anatomically variable structures such
as Heschl’s gyrus since adjacent structures have similar
intensity characteristics. In such cases, the success of the
intensity-based correspondence finding mainly depends on
the accuracy of the non-rigid registration technique, and
topological/geometrical constraints to further guide theatlas-
based segmentation of the structure of interest.

We propose a fully automatic localization/segmentation
tool for HG through the use of a statistical anatomical
atlas. We adapt the methodology proposed by Rueckert
to find the correspondence among training sets using a
high-dimensional deformable registration technique known
as Hierarchical Attribute Matching Mechanism for Elastic
Registration (HAMMER) [11]. The achieved correspondence
in deformation fields from template space to individual



subject frames is used to generate an atlas in the form of an
average mean deformation plus the most dominant deforma-
tion directions captured from the training set using principal
component analysis (PCA). Employing such an atlas, one
can quantify the anatomical variation of a new subject’s
HG structure along the dominant variation directions defined
by the training set. Furthermore, the subject-specific atlas
parameters are applied to the manually labeled HG region
of the template to construct a specific model of Heschl’s
gyrus for the new subject.

We demonstrate, using a leave-one-out approach on 12
segmented high-resolution MR whole-brain images, that
HAMMER can accurately identify corresponding regions
within the HG. In each iteration, every labeled subject
volume was considered once as a test case, while the
remaining datasets were used as the training samples for the
construction of the atlas. To assess the performance of the
constructed atlas, the overlap region was calculated between
the HG region automatically extracted using the 11-dataset
constructed atlas, and the manually painted HG region. A
separate atlas was generated for each hemisphere.

II. METHOD

The proposed segmentation tool utilizes the a-priori
knowledge of the desired structure available through a set
of training samples together with high-dimensional image
warping (HAMMER) in order to construct a 3D statistical
atlas using principal component analysis.

A. Data Acquisition

T1-weighted anatomical images were acquired from 12
volunteer subjects (ages18−26, right-handed). Whole-brain,
T1-weighted MPRAGE images were acquired using a3.0
Tesla Siemens Trio MRI scanner (TE2.99 ms, Flip angle9
degrees, TR2250 ms; resolution1 mm isotropic). Images
were stripped to remove skull and scalp using the Brain
Extraction Tool (BET) of the FSL software1. All subjects
gave informed consent and the procedure was approved by
Queen’s University Health Sciences Research Ethics Board.

B. Heschl’s Gyrus Boundaries

Three raters labeled left and right Heschl’s gyrus volumes
according to the criteria proposed by Penhune [12]. MRIcron
[13] was used to display the images as well as to label and
save the regions of interest. For cases with two or multiple
Heschl’s gyri, only the most anterior one was painted. Final
volumes of left and right HG were created by identifying
voxels labeled as HG by at least two out of three raters. The
inter-rater reliability measure, defined as the average of the
Dice’s similarity coefficient [14] for all combinations of two
out of three, was72.0 ± 7.8% (mean±std).

C. Data Pre-processing

The structural MR volume data were rigidly registered to a
common reference frame (i.e., Colin27 or CJH27 [15]) using

1FSL: Oxford Centre for Functional MRI, Oxford University, UK.

Fig. 2. Vectorization procedure of the 3D deformation field.

the SPM5 toolbox (Statistical Parametric Mapping: Well-
come Department of Cognitive Neurology, London, UK).
The rigid transformation guarantees the alignment of the
volume centers among all the brains. The resulting trans-
formation parameters were also applied to the painted HG
volumes of the corresponding subject. The rigidly registered
HG volumes were thresholded to generate binary masksMSi

,
assigning value1 to voxels (p) corresponding to HG and0
to the background:

∀p ∈ Si,MSi
(p) =

{

1 if Si(p) ∈ HG volume;
0 else,

(1)

whereSi refers to subjecti’s volume data.

D. Non-rigid Registration

Rigid-body transformation only compensates for transla-
tional and rotational differences among different datasets.
Non-rigid deformable registration is required to capture the
geometrical/topological inter-subject variabilities. For this
study, we chose to use HAMMER [11]: an elastic registration
technique which utilizes an attribute vector for every voxel
of the image. The attribute vector expresses the geometric
features that are calculated from the tissue maps to reflect
underlying anatomy at different scales. Our application of
the HAMMER algorithm proceeded in two steps: First, in
order to generate the tissue map, the brain data is segmented
into gray matter, white matter and cerebrospinal fluid using
FMRIB’s Automated Segmentation Tool (FAST) of the FSL
software package. Second, HAMMER registration is applied
to warp the brain images to a selected template. HAMMER
provides a 3D deformation field from the subject space to
the template frame (di : Si 7→ ST , whereSi andST refer to
the subject and template volumes, respectively).

E. Point Correspondence

HAMMER’s optimization requires consistent transforma-
tions that give identical mapping between two registering
images, regardless of which of the two images is treated as
the template. Therefore, there exists a one-to-one mapping
between every subject and the template. The inverse of
the deformation field from subject space to the template
frame guarantees point correspondence among all datasets.
The inverse of the deformation field between each set and
the template (represented asd∗

i
(x, y, z) : ST 7→ Si) was



Fig. 3. Eigenvalues corresponding to different principal modes of variation
for right, and left hemispheres.

masked with the template’s HG binary mask to include only
those voxels that correspond to Heschl’s gyrus. The resulting
masked deformation fields (from the template space to the
subject space) were then used as the training samples for
statistical atlas generation as described next.

F. Statistical Atlas Construction

HAMMER provides a deformation vector per voxel and,
therefore, the number of degrees of freedom for the de-
formable registration is equal to the number of voxels within
the image volume. Each deformation fieldd∗

i
(x, y, z) can be

expressed as a concatenation of 3D vectors, which describe
the deformation in three orthogonal directions of X, Y, and
Z at each voxel in the reference frame. Figure 2 depicts the
procedure for the vectorization of the 3D deformation field.

Next, PCA is applied to the vectorized deformation fields
to approximate the distribution of~d∗

i
using a parameterized

linear model:

~d∗ = ~̂d∗ +
∑

i

αi
~φi, (2)

where ~̂d∗, αi refer to average deformation vector, and model
parameter coefficients, respectively.~φis are formed by the
principal components of the covariance matrixΣ:

Σ =
1

n − 1

n
∑

i=1

(~d∗ − ~̂d∗)(~d∗ − ~̂d∗)T (3)

Assuming a multi-dimensional Gaussian distribution for
every voxel, we can parameterize any deformation field in
the form of the principal modes of variation generated using
the training set. Principal modes were calculated for the left
and right hemispheres separately.

G. Segmenting Heschl’s Gyrus from a New Subject Volume

The constructed atlas, in the form of a mean deformation
and several variation modes, can be used to automatically
extract HG structure from any new test case using the
following procedure:

(1) Using HAMMER, the new subject data is registered
to the selected template.

(2) The inverse of the deformation field is calculated,
masked using template’s HG binary region, and vectorized
using the procedure described in the previous section.

Fig. 4. Atlas-based constructed HG shape models overlaid on the labeled
regions for several test cases.

(3) The vectorized deformation field is then decomposed
along the eigenvectors of the constructed atlas to find the
coefficients for different variation modes. Coefficients are
calculated by solving the following equation:

~d∗new = ~̂d∗ + Φ~αT , (4)

where ~d∗new, ~̂d∗, Φ, and ~α refer to the inverse of the
new subject’s deformation field (size:3mnp × 1), mean
inverse deformation (size:3mnp×1), and eigenvectors (size:
3mnp × k) generated by atlas and eigen coefficients (size:
1 × k), respectively.m × n × p andk represent the volume
size and the number of training samples.

(4) The atlas parameters (eigenvectors and eigen coef-
ficients) together with the mean deformation are used to
construct a new mapping that deforms the template’s HG
volume towards the anatomy of the new subject.

III. RESULTS AND DISCUSSION

From the 12-MRI dataset with labeled HG volumes, one
dataset was randomly selected as the template for the reg-
istration. Using a leave-one-out technique, the 11 remaining
labeled datasets were divided into a set of 10 training samples
and a testing set (11 different cases). The 10 training sets
were registered to the selected template using HAMMER.
The inverse of the resulting deformation fields were used
to construct a statistical deformation model for Heschl’s
gyrus following the procedure described in Section II. The
constructed atlas consisted of a mean deformation field and
10 principal modes of variation.

For a new test case, the difference between the defor-
mation field (from the template frame to the test set) and
the mean deformation resulting from the atlas was mapped
along the eigenvectors to find the corresponding coefficients.
This procedure was performed for left and right hemispheres
separately. Figure 3 shows the sorted eigenvalues corre-
sponding to left and right hemispheres for one of 11 test
cases. The exponential drop of the eigenvalues confirms that
the constructed atlas was able to considerably capture the
variability of Heschl’s gyrus among individuals, even witha
limited number of training samples. Figure 4 shows the atlas-
based constructed HG volume overlaid on the corresponding
manually labeled region for several test cases.



We quantified the overlap between the manually labeled
and the segmented HG volumes by calculating the ratio of
the voxels in the intersection of the two volumes to the
total number of voxels within the constructed HG volume.
This was done separately for each hemisphere. Results of the
overlap measure are summarized in Table I, and indicate that
at least75% of the automatically segmented voxels were also
identified as HG by the human labelers. Although the right
hemisphere showed somewhat greater overlap, this difference
was not significant (paired t-test,α = 0.05).

Hemisphere Overlap (mean±std) %
Left Hemisphere 75.3± 11.4%

Right Hemisphere 83.6± 7.8%

TABLE I

OVERLAP BETWEEN THE CONSTRUCTED AND LABELEDHG REGIONS

FOR 11 TESTING CASES(MEAN±STD).

The technique as implemented here has at least three
limitations: (a) the small number of available labeled datasets
limits the amount of variability captured by the training sets
in the construction of the atlas, (b) the pair-wise registration
using a specific template introduces a bias towards the
anatomy of the selected template, which affects the regis-
tration results, and (c) finally, individual training samples
might have highly asymmetric topologies that makes it even
more complex to find the correspondence among datasets.
An example of such topological variability is the existence
of multiple Heschl’s gyri in one hemisphere and a single
gyrus in the other hemisphere.

IV. CONCLUSIONSAND FUTURE WORK

We present an automatic tool for the localization and
extraction of first Heschl’s gyrus, the morphological loca-
tion of primary auditory cortex, in human brains. We con-
structed statistical anatomical atlases using principal com-
ponent analysis from 12 high-resolution MR images from
normal human participants. HG was manually labeled in
these brains by three independent observers, who were not
informed of the purpose of the study. We used HAMMER,
a high-dimensional deformable registration technique, to
identify corresponding points on different training sets.Since
HAMMER performs a consistent registration (meaning that
there exists a one-to-one mapping between the two images),
point correspondence among registered data is guaranteed.
The resulting deformation fields (from the template space to
the subject frame) were used to construct a 3D statistical atlas
for the HG region in the form of a mean deformation and sev-
eral principal modes of variation. To assess the performance
of the constructed atlas, the overlap region was calculated
between the manually labeled and extracted HG region using
the constructed atlases. The method demonstrated accuracy
over 75% in segmenting HG over the subject set.

The performance of the proposed technique can be further
enhanced in a few different ways. Currently, a pair-wise
registration (HAMMER) is used to find the correspondence
among training samples. This introduces a bias toward the

specific anatomy of the selected template image. We are in
the early stages of developing a template-free group-wise
registration that replaces the current pair-wise registration
framework to avoid such bias. Second, this study included
only 12 labeled subject volume sets, and we plan to extend
this work to a larger sample. Third, it would be interesting to
know whether one could incorporate the constructed subject
model as an initialization of another segmentation method
such as active contours, level sets, region growing, etc. for
the extraction of the desired anatomy from intensity image
volumes. The automatically segmented regions could be
easily segmented into grey and white matter, and the grey-
matter segments used to conduct anatomically informed,
region-of-interest analysis on functional MRI data. This may
significantly increase the accuracy of functional analysis. The
proposed method could also be adapted for the extraction of
other anatomical regions in the brain, as long as they are
morphologically defined enough that they can be manually
segmented (labeled) by skilled observers.
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