14,169 research outputs found
Influence of Gender Appropriateness of Sex-Role and Occupational Preferences on Evaluations of a Competent Person
Previous research has found that while masculine sex-role preferences are more highly valued, persons holding gender consistent sex-role preferences generally are rated as more attractive. The present study explores the interactive effect of gender consistent/inconsistent sex-role preferences and congruent/incongruent occupational choices on evaluations of a person from varying perspectives. Statistical analysis of the data revealed (1) people holding masculine sex-role preferences are perceived to have a higher motivation to succeed, and to be more competent; (2)from the perspective of friend and potential employee, persons holding gender consistent sex-role preferences are perceived as more attractive; (3) from the perspective of potential employer, there is a tendency for males to prefer employees who hold masculine sex-role preferences, while females continue to prefer gender consistent sex-role preferences
Seamless metal-clad fiber-reinforced organic matrix composite structures and process for their manufacture
A metallic outer sleeve is provided which is capable of enveloping a hollow metallic inner member having continuous reinforcing fibers attached to the distal end thereof. The inner member is then introduced into outer sleeve until inner member is completely enveloped by outer sleeve. A liquid matrix member is then injected into space between inner member and outer sleeve. A pressurized heat transfer medium is flowed through the inside of inner member, thereby forming a fiber reinforced matrix composite material. The wall thicknesses of both inner member and outer sleeve are then reduced to the appropriate size by chemical etching, to adjust the thermal expansion coefficient of the metal-clad composite structure to the desired value. thereby forming a fiber reinforced matrix composite material. The wall thicknesses of both inner member and outer sleeve are then reduced to the appropriate size by chemical etching, to adjust the thermal expansion coefficient of the metal-clad composite structure to the desired value. The novelty of this invention resides in the development of a efficient method of producing seamless metal clad fiber reinforced organic matrix composite structures
Disparities in Cause-Specific Cancer Survival by Census Tract Poverty Level in Idaho, U.S.
Objective. This population-based study compared cause-specific cancer survival by socioeconomic status using methods to more accurately assign cancer deaths to primary site. Methods. The current study analyzed Idaho data used in the Accuracy of Cancer Mortality Statistics Based on Death Certificates (ACM) study supplemented with additional information to measure cause-specific cancer survival by census tract poverty level. Results. The distribution of cases by primary site group differed significantly by poverty level (chi-square = 265.3, 100 df, p In the life table analyses, for 8 of 24 primary site groups investigated, and all sites combined, there was a significant gradient relating higher poverty with poorer survival. For all sites combined, the absolute difference in 5-year cause-specific survival rate was 13.6% between the lowest and highest poverty levels. Conclusions. This study shows striking disparities in cause-specific cancer survival related to the poverty level of the area a person resides in at the time of diagnosis
Patterns of patterns
posterPurpose of this Poster is to demonstrate that it takes the patterns of values in all the many dimensions to place each patient in the final patterns shown in each of the 5 charts. The final patterns determine the ability of each technology to identify or distinguish patients in each class. It is patterns of many genes, not one gene, determining class membership
Probing the Structure and Function of Biopolymer-Carbon Nanotube Hybrids with Molecular Dynamics
Nanoscience deals with the characterization and manipulation of matter on the atomic/molecular size scale in order to deepen our understanding of condensed matter and develop revolutionary technology. Meeting the demands of the rapidly advancing nanotechnological frontier requires novel, multifunctional nanoscale materials. Among the most promising nanomaterials to fulfill this need are biopolymer-carbon nanotube hybrids (Bio-CNT). Bio-CNT consists of a single-walled carbon nanotube (CNT) coated with a self-assembled layer of biopolymers such as DNA or protein. Experiments have demonstrated that these nanomaterials possess a wide range of technologically useful properties with applications in nanoelectronics, medicine, homeland security, environmental safety and microbiology. However, a fundamental understanding of the self-assembly mechanics, structure and energetics of Bio-CNT is lacking. The objective of this thesis is to address this deficiency through molecular dynamics (MD) simulation, which provides an atomic-scale window into the behavior of this unique nanomaterial. MD shows that Bio-CNT composed of single-stranded DNA (ssDNA) self-assembles via the formation of high affinity contacts between DNA bases and the CNT sidewall. Calculation of the base-CNT binding free energy by thermodynamic integration reveals that these contacts result from the attractive pi–pi stacking interaction. Binding affinities follow the trend G \u3e A \u3e T \u3e C. MD reveals that long ssDNA sequences are driven into a helical wrapping about CNT with a sub-10 nm pitch by electrostatic and torsional interactions in the backbone. A large-scale replica exchange molecular dynamics simulation reveals that ssDNA-CNT hybrids are disordered. At room temperature, ssDNA can reside in several low-energy conformations that contain a sequence-specific arrangement of bases detached from CNT surface. MD demonstrates that protein-CNT hybrids composed of the Coxsackie-adenovirus receptor are biologically active and function as a nanobiosensor with specific recognition of Knob proteins from the adenovirus capsid. Simulation also shows that the rigid CNT damps structural fluctuations in bound proteins, which may have important ramifications for biosensing devices composed of protein-CNT hybrids. These results expand current knowledge of Bio-CNT and demonstrate the effectiveness of MD for investigations of nano-biomolecular systems
Determination of lunar ilmentite abundances from remotely sensed data
The mapping of ilmenite on the surface of the moon is a necessary precursor to the investigation of prospective lunar base sites. Telescopic observations of the moon using a variety of narrow bandpass optical interference filters are being performed as a preliminary means of achieving this goal. Specifically, ratios of images obtained using filters centered at 0.40 and 0.56 microns provide quantitative estimates of TiO2 abundances. Analysis of preliminary distribution maps of TiO2 concentrations allows identification of specific high-Ti areas. Investigations of these areas using slit spectra in the range 0.03 to 0.85 microns are underway to search for discrete spectral signatures attributable to ilmenite
Determination of lunar ilmenite abundances from remotely sensed data
The mineral ilmenite (FeTiO3) was found in abundance in lunar mare soils returned during the Apollo project. Lunar ilmenite often contains greater than 50 weight-percent titanium dioxide (TiO2), and is a primary potential resource for oxygen and other raw materials to supply future lunar bases. Chemical and spectroscopic analysis of the returned lunar soils produced an empirical function that relates the spectral reflectance ratio at 400 and 560 nm to the weight percent abundance of TiO2. This allowed mapping of the lunar TiO2 distribution using telescopic vidicon multispectral imaging from the ground; however, the time variant photometric response of the vidicon detectors produced abundance uncertainties of at least 2 to 5 percent. Since that time, solid-state charge-coupled device (CCD) detector technology capable of much improved photometric response has become available. An investigation of the lunar TiO2 distribution was carried out utilizing groundbased telescopic CCD multispectral imagery and spectroscopy. The work was approached in phases to develop optimum technique based upon initial results. The goal is to achieve the best possible TiO2 abundance maps from the ground as a precursor to lunar orbiter and robotic sample return missions, and to produce a better idea of the peak abundances of TiO2 for benefaction studies. These phases and the results are summarized
High turnover in electro-oxidation of alcohols and ethers with a glassy carbon-supported phenanthroimidazole mediator.
Glassy carbon electrodes covalently modified with a phenanthroimidazole mediator promote electrochemical alcohol and ether oxidation: three orders of magnitude increase in TON, to ∼15 000 in each case, was observed compared with homogeneous mediated reactions. We propose the deactivation pathways in homogeneous solution are prevented by the immobilization: modified electrode reversibility is increased for a one-electron oxidation reaction. The modified electrodes were used to catalytically oxidize p-anisyl alcohol and 1-((benzyloxy)methyl)-4-methoxybenzene, selectively, to the corresponding benzaldehyde and benzyl ester, respectively
An alternate method for achieving temperature control in the -130 C to 75 C range
Thermal vacuum testing often requires temperature control of chamber shrouds and heat exchangers within the -130 C to 75 C range. There are two conventional methods which are normally employed to achieve control through this intermediate temperature range: (1) single-pass flow where control is achieved by alternately pulsing hot gaseous nitrogen (GN2) and cold LN2 into the feed line to yield the setpoint temperature; and (2) closed-loop circulation where control is achieved by either electrically heating or LN2 cooling the circulating GN2 to yield the setpoint temperature. A third method, using a mass flow ratio controller along with modulating control valves on GN2 and LN2 lines, provides excellent control but equipment for this method is expensive and cost-prohibitive for all but long-term continuous processes. The single-pass method provides marginal control and can result in unexpected overcooling of the test article from even a short pulse of LN2. The closed-loop circulation method provides excellent control but requires an expensive blower capable of operating at elevated pressures and cryogenic temperatures. Where precise control is needed (plus or minus 2 C), single-pass flow systems typically have not provided the precision required, primarily because of overcooling temperature excursions. Where several individual circuits are to be controlled at different temperatures, the use of expensive cryogenic blowers for each circuit is also cost-prohibitive, especially for short duration of one-of-a-kind tests. At JPL, a variant of the single-pass method was developed that was shown to provide precise temperature control in the -130 C to 75 C range while exhibiting minimal setpoint overshoot during temperature transitions. This alternate method uses a commercially available temperature controller along with a GN2/LN2 mixer to dampen the amplitude of cold temperature spikes caused by LN2 pulsing. The design of the GN2/LN2 mixer, the overall control system configuration, the operational procedure, and the prototype system test results are described
- …