143,075 research outputs found
Pre-integration lateral inhibition enhances unsupervised learning
A large and influential class of neural network architectures use
post-integration lateral inhibition as a mechanism for competition. We argue
that these algorithms are computationally deficient in that they fail to
generate, or learn, appropriate perceptual representations under certain
circumstances. An alternative neural network architecture is presented in which
nodes compete for the right to receive inputs rather than for the right to
generate outputs. This form of competition, implemented through pre-integration
lateral inhibition, does provide appropriate coding properties and can be used
to efficiently learn such representations. Furthermore, this architecture is
consistent with both neuro-anatomical and neuro-physiological data. We thus
argue that pre-integration lateral inhibition has computational advantages over
conventional neural network architectures while remaining equally biologically
plausible
A Profile of Frail Older Americans and Their Caregivers
Provides a profile of older Americans and their caregivers, focusing on people age 65 and older who are not in nursing homes, and those with severe disabilities. Includes policy implications and recommendations for community-based home care options
Improved Superlinks for Higher Spin Operators
Traditional smearing or blocking techniques serve well to increase the
overlap of operators onto physical states but allow for links orientated only
along lattice axes. Recent attempts to construct more general propagators have
shown promise at resolving the higher spin states but still rely on iterative
smearing. We present a new method of superlink construction which creates
meared links from (sparse) matrix multiplications, allowing for gluonic
propagation in arbitrary directions. As an application and example, we compute
the positive-parity, even-spin glueball spectrum up to spin 6 for pure gauge
SU(2) at beta = 6, L = 16, in D = 2+1 dimensions.Comment: 27 pages, 10 tables, 8 figures, uses RevTex4, minor corrections and
further development, reunitarized superlinks, as accepted by PR
A measurement of energetic test electron interactions with a plasma
Interaction of energetic test electrons with dense high temperature plasma and energy dissipation distributio
Higher homotopy operations and cohomology
We explain how higher homotopy operations, defined topologically, may be
identified under mild assumptions with (the last of) the Dwyer-Kan-Smith
cohomological obstructions to rectifying homotopy-commutative diagrams.Comment: 28 page
Excitation energies, polarizabilities, multipole transition rates, and lifetimes of ions along the francium isoelectronic sequence
Relativistic many-body perturbation theory is applied to study properties of
ions of the francium isoelectronic sequence. Specifically, energies of the 7s,
7p, 6d, and 5f states of Fr-like ions with nuclear charges Z = 87 - 100 are
calculated through third order; reduced matrix elements, oscillator strengths,
transition rates, and lifetimes are determined for 7s - 7p, 7p - 6d, and 6d -
5f electric-dipole transitions; and 7s - 6d, 7s - 5f, and 5f_5/2 - 5f_7/2
multipole matrix elements are evaluated to obtain the lifetimes of low-lying
excited states. Moreover, for the ions Z = 87 - 92 calculations are also
carried out using the relativistic all-order single-double method, in which
single and double excitations of Dirac-Fock wave functions are included to all
orders in perturbation theory. With the aid of the SD wave functions, we obtain
accurate values of energies, transition rates, oscillator strengths, and the
lifetimes of these six ions. Ground state scalar polarizabilities in Fr I, Ra
II, Ac III, and Th IV are calculated using relativistic third-order and
all-order methods. Ground state scalar polarizabilities for other Fr-like ions
are calculated using a relativistic second-order method. These calculations
provide a theoretical benchmark for comparison with experiment and theory.Comment: 13 figures, 11 table
Excitation energies, polarizabilities, multipole transition rates, and lifetimes in Th IV
Excitation energies of the ns_{1/2} (n=7-10), np_j (n=7-9), nd_j (n=6-8),
nf_{j} (n=5-7), and ng_{j} (n=5-6) states in Th IV are evaluated. First-,
second-, third-, and all-order Coulomb energies and first- and second-order
Coulomb-Breit energies are calculated. Reduced matrix elements, oscillator
strengths, transition rates, and lifetimes are determined for the 96 possible
nl_j-n'l'_j' electric-dipole transitions. Multipole matrix elements
(7s_{1/2}-6d_j, 7s_{1/2}-5f_j, and 5f_{5/2}-5f_{7/2}) are evaluated to obtain
the lifetimes of the and 7s_{1/2}$ states. Matrix elements are
calculated using both relativistic many-body perturbation theory, complete
through third order, and a relativistic all-order method restricted to single
and double (SD) excitations. Scalar and tensor polarizabilities for the
5f_{5/2} ground state in Th3+ are calculated using relativistic third-order and
all-order methods. These calculations provide a theoretical benchmark for
comparison with experiment and theory.Comment: 9 pages, 9 figure
- …
