145,487 research outputs found
Subgravity simulator Patent
Apparatus for training astronaut crews to perform on simulated lunar surface under conditions of lunar gravit
Pneumatic amplifier Patent
Pneumatic servoamplifier for controlling flow regulatio
Lanthanide Ionization Energies and the Sub-Shell Break. Part 2. The Third and Fourth Ionization Energies
By interpolating a 4fq6s → 4fq7s transition within the sequence f1 → f14 rather than between f0 and f14, revised third and fourth ionization energies of the lanthanides have been obtained. The revised values, together with the second ionization energies calculated in a previous paper, are used to calculate values of the standard enthalpies of formation of the gaseous tripositive ions, ΔfHƟ(M3+,g), and of the lattice and hydration enthalpies of some lanthanide compounds and ions in the trivalent and tetravalent states. The displacements of f0 values from nearly smooth f1 → f14 variations exceed 30 kJ mol-1 and indicate substantial subshell breaks
Valencies of the lanthanides
The valencies of the lanthanides vary more than was once thought. In addition to valencies associated with a half-full shell, there are valencies associated with a quarter- and three-quarter-full shell. This can be explained on the basis of Slater’s theory of many-electron atoms. The same theory explains the variation in complexing constants in the trivalent state (the “tetrad effect”). Valency in metallic and organometallic compounds is also discussed
Development of aircraft lavatory compartments with improved fire resistance characteristics. Phase 4: Sandwich panel decorative ink development
Five chemically different resin systems with improved fire resistance properties were studied for a possible screenprinting ink application. Fire resistance is hereby defined as the cured ink possessing improvements in flammability, smoke emission, and thermal stability. The developed ink is for application to polyvinyl fluoride film. Only clear inks without pigments were considered. Five formulations were evaluated compared with KC4900 clear acrylic ink, which was used as a baseline. The tests used in the screening evaluation included viscosity, smoke and toxic gas emission, limiting oxygen index (LOI), and polyvinyl fluoride film (PVF) printability. A chlorofluorocarbon resin (FPC461) was selected for optimization studies. The parameters for optimization included screenprinting process performance, quality of coating, and flammability of screenprinted 0.051-mm (0.002-in.) white Tedlar. The quality of the screenprinted coating on Tedlar is dependent on viscosity, curing time, adhesion to polyvinyl fluoride film, drying time (both inscreen and as an applied film), and silk screen mesh material and porosity
Effects of model error on control of large flexible space antenna with comparisons of decoupled and linear quadratic regulator control procedures
An analysis was performed to determine the effects of model error on the control of a large flexible space antenna. Control was achieved by employing two three-axis control-moment gyros (CMG's) located on the antenna column. State variables were estimated by including an observer in the control loop that used attitude and attitude-rate sensors on the column. Errors were assumed to exist in the individual model parameters: modal frequency, modal damping, mode slope (control-influence coefficients), and moment of inertia. Their effects on control-system performance were analyzed either for (1) nulling initial disturbances in the rigid-body modes, or (2) nulling initial disturbances in the first three flexible modes. The study includes the effects on stability, time to null, and control requirements (defined as maximum torque and total momentum), as well as on the accuracy of obtaining initial estimates of the disturbances. The effects on the transients of the undisturbed modes are also included. The results, which are compared for decoupled and linear quadratic regulator (LQR) control procedures, are shown in tabular form, parametric plots, and as sample time histories of modal-amplitude and control responses. Results of the analysis showed that the effects of model errors on the control-system performance were generally comparable for both control procedures. The effect of mode-slope error was the most serious of all model errors
Decoupled control of a long flexible beam in orbit
Control involved commanding changes in pitch attitude as well as nulling initial disturbances in the pitch and flexible modes. Control force requirements were analyzed. Also, the effects of parameter uncertainties on the decoupling process were analyzed and were found to be small. Two methods were investigated: the system was completely coupled and certain actuators were then eliminated, one by one, which resulted in some or all modes not fully controlled; specified modes of the system were excluded from the decoupling control law by employing viewer control actuators than modes in the model. In both methods, adjustments were made in the feedback gains to include the uncontrolled modes in the overall control of the system
Market Potential for Northern Plains Farm Equipment in Brazil
International Relations/Trade,
Effects of errors on decoupled control systems
Various error sources in a decoupled control system are considered in connection with longitudinal control on a simulated externally blown jet-flap STOL aircraft. The system employed the throttle, horizontal tail, and flaps to decouple the forward velocity, pitch angle, and flight-path angle. The errors considered were: (1) imperfect knowledge of airplane aerodynamic and control characteristics; (2) imperfect measurements of airplane state variables; (3) change in flight conditions, and (4) lag in the airplane controls and in engine response. The effects of the various errors on the decoupling process were generally minor. Significant coupling in flight-path angle was caused by control lag during speed-command maneuvers. However, this coupling could be eliminated by including the control lag in the design of the decoupled system. Other error sources affected primarily the commanded response quantity
A new sequential covering strategy for inducing classification rules with ant colony algorithms
Ant colony optimization (ACO) algorithms have been successfully applied to discover a list of classification rules. In general, these algorithms follow a sequential covering strategy, where a single rule is discovered at each iteration of the algorithm in order to build a list of rules. The sequential covering strategy has the drawback of not coping with the problem of rule interaction, i.e., the outcome of a rule affects the rules that can be discovered subsequently since the search space is modified due to the removal of examples covered by previous rules. This paper proposes a new sequential covering strategy for ACO classification algorithms to mitigate the problem of rule interaction, where the order of the rules is implicitly encoded as pheromone values and the search is guided by the quality of a candidate list of rules. Our experiments using 18 publicly available data sets show that the predictive accuracy obtained by a new ACO classification algorithm implementing the proposed sequential covering strategy is statistically significantly higher than the predictive accuracy of state-of-the-art rule induction classification algorithms
- …