2,739 research outputs found
A Study of Object Play in Captive Bottlenose Dolphins (\u3ci\u3eTursiops truncatus\u3c/i\u3e)
Behaviors related to play are positively reinforcing as they promote the continued exhibition of play behaviors in a variety of animal species. Play in animals is thought to contribute to the development and practice of skills animals require across their lifespan (i.e., foraging, mating, etc.). In bottlenose dolphins (Tursiops truncatus), several categories of play can be observed such as solitary play, social play, locomotor play, predatory play, and object play. The aim of the present study was to observe how variables of age-class, sex, object type, and play sociality influenced dolphin object play by utilizing video data from a semi-captive bottlenose dolphin population at the Roatan Institute for Marine Sciences. Results from this study were consistent with the hypothesis that juveniles would play the most of any age group. Females and males showed no significant difference in time spent playing with objects. The dolphins played with seaweed most often, and their play sociality included human-facilitated play more than social or solitary play. The results of this study show that further research needs to be done on dolphins in order to better understand their play habits. This research is important in areas of species conservation, wildlife management, and bringing awareness to the public of animals and their complex needs
Glucagon-like peptide-1 (GLP-1) increases in plasma and colon tissue prior to estrus and circulating levels change with increasing age in reproductively competent Wistar rats
There is a well-documented association between cyclic changes to food intake and the changing ovarian hormone levels of the reproductive cycle in female mammals. Limited research on appetite-controlling gastrointestinal peptides has taken place in females, simply because regular reproductive changes in steroid hormones present additional experimental factors to account for. This study focussed directly on the roles that gastrointestinal-secreted peptides may have in these reported, naturally occurring, changes to food intake during the rodent estrous cycle and aimed to determine whether peripheral changes occurred in the anorexigenic (appetite-reducing) hormones peptide-YY (PYY) and glucagon-like peptide-1 (GLP-1) in female Wistar rats (32-44 weeks of age). Total forms of each peptide were measured in matched fed and fasted plasma and descending colon tissue samples for each animal during the dark (feeding) phase. PYY concentrations did not significantly change between defined cycle stages, in either plasma or tissue samples. GLP-1 concentrations in fed plasma and descending colon tissue were significantly increased during proestrus, just prior to a significant reduction in fasted stomach contents at estrus, suggesting increased satiety and reduced food intake at this stage of the cycle. Increased proestrus GLP-1 concentrations could contribute to the reported reduction in food intake during estrus and may also have biological importance in providing the optimal nutritional and metabolic environment for gametes at the potential point of conception. Additional analysis of the findings demonstrated significant interactions of ovarian cycle stage and fed/fasted status with age on GLP-1, but not PYY plasma concentrations. Slightly older females had reduced fed plasma GLP-1 suggesting that a relaxation of regulatory control of this incretin hormone may also take place with increasing age in reproductively competent females
Plasma Ghrelin Concentrations Were Altered with Oestrous Cycle Stage and Increasing Age in Reproductively Competent Wistar Females
Changes in appetite occur during the ovarian cycle in female mammals. Research on appetite-regulatory gastrointestinal peptides in females is limited, because reproductive changes in steroid hormones present additional experimental factors to control for. This study aimed to explore possible changes in the orexigenic (appetite-stimulating) gastrointestinal peptide hormone ghrelin during the rodent oestrous cycle. Fed and fasted plasma and stomach tissue samples were taken from female Wistar rats (32–44 weeks of age) at each stage of the oestrous cycle for total ghrelin quantification using radioimmunoassay. Sampling occurred during the dark phase when most eating takes place in rats. Statistical analysis was by paired-samples t-test, one-way ANOVA on normally distributed data, with Tukey post-hoc tests, or Kruskal-Wallis if not. GLM univariate analysis was used to assess main effects and interactions in ghrelin concentrations in the fed or fasted state and during different stages of the ovarian cycle, with age as a covariate. No consistent fed to fasted ghrelin increases were measured in matched plasma samples from the same animals, contrary to expectations. Total ghrelin concentrations did not significantly change between cycle stages with ANOVA, in either fed or fasted plasma or in stomach tissue. This was despite significantly decreased fasted stomach contents at oestrus (P = 0.028), suggesting decreased food intake. There was however a significant interaction in ghrelin plasma concentrations between fed and fasted proestrus rats and a direct effect of age with rats over 37 weeks old having lower circulating concentrations of ghrelin in both fed and fasted states. The biological implications of altered ghrelin plasma concentrations from 37 weeks of age are as yet unknown, but warrant further investigation. Exploring peripheral ghrelin regulatory factor changes with increasing age in reproductively competent females may bring to light potential effects on offspring development and nutritional metabolic programming
Osteoarthritis: What does imaging tell us about its etiology.
Osteoarthritis (OA) is the most common joint disorder and a leading cause of disability. Due to an aging population and increasing obesity, the incidence of OA is rising. The etiology of OA is multifactorial and complex; thus prevention of OA remains challenging. Risk factors can be divided into person-level factors such as age, sex, obesity, genetics, race/ethnicity, and diet, and joint-level factors including injury, malalignment, and abnormal loading of the joints. This review provides a brief overview of the person-level risk factors and a more in-depth analysis of those at the joint level. It is only through an improved understanding of risk factors for the disease that we may be able to intervene meaningfully and prevent its occurrence
Template-Stripped Multifunctional Wedge and Pyramid Arrays for Magnetic Nanofocusing and Optical Sensing
We present large-scale reproducible
fabrication of multifunctional ultrasharp metallic structures on planar
substrates with capabilities including magnetic field nanofocusing
and plasmonic sensing. Objects with sharp tips such as wedges and
pyramids made with noble metals have been extensively used for enhancing
local electric fields via the lightning-rod effect or plasmonic nanofocusing.
However, analogous nanofocusing of magnetic fields using sharp tips
made with magnetic materials has not been widely realized. Reproducible
fabrication of sharp tips with magnetic as well as noble metal layers
on planar substrates can enable straightforward application of their
material and shape-derived functionalities. We use a template-stripping
method to produce plasmonic-shell-coated nickel wedge and pyramid
arrays at the wafer-scale with tip radius of curvature close to 10
nm. We further explore the magnetic nanofocusing capabilities of these
ultrasharp substrates, deriving analytical formulas and comparing
the results with computer simulations. These structures exhibit nanoscale
spatial control over the trapping of magnetic microbeads and nanoparticles
in solution. Additionally, enhanced optical sensing of analytes by
these plasmonic-shell-coated substrates is demonstrated using surface-enhanced
Raman spectroscopy. These methods can guide the design and fabrication
of novel devices with applications including nanoparticle manipulation,
biosensing, and magnetoplasmonics
Improved timed-mating, non-invasive method using fewer unproven female rats with pregnancy validation via early body mass increases
For studies requiring accurate conception-timing, reliable, efficient methods of detecting oestrus reduce time and costs, whilst improving welfare. Standard methods use vaginal cytology to stage cycle, and breeders are paired–up using approximately five proven females with proven males to achieve at least one conception on a specific day. We describe an alternative, fast, consistent, non-invasive method of timed-mating using detection of lordosis behaviour in Wistar and Lister-Hooded rats that used unproven females with high success rates. Rats under reverse-lighting had body masses recorded pre-mating, day (d) 3-4, d8, d10 and d18 of pregnancy. Using only the presence of the oestrus dance to time-mate females for 24-hrs, 89% Wistar and 88% Lister-Hooded rats successfully conceived. We did not observe behavioural oestrus in Sprague-Dawleys without males present. Significant body mass increases following mating distinguished pregnant from non-pregnant rats, as early as d4 of pregnancy (10% ± 1.0 increase cf 3% ± 1.2). The pattern of increases throughout gestation was similar for all pregnant rats until late pregnancy, when there were smaller increases for primi- and multiparous rats (32% ± 2.5; 25% ± 2.4), whereas nulliparous rats had highest gains (38% ± 1.5). This method demonstrated a distinct refinement of the previous timed-mating common practice used, as disturbance of females was minimised. Only the number required of nulli-, primi- or multiparous rats were mated, and body mass increases validated pregnancy status. This new breeding-management method is now established practice for two strains of rat and resulted in a reduction in animal use
- …