73,544 research outputs found

    Core-valence correlations for atoms with open shells

    Get PDF
    We present an efficient method of inclusion of the core-valence correlations into the configuration interaction (CI) calculations. These correlations take place in the core area where the potential of external electrons is approximately constant. A constant potential does not change the core electron wave functions and Green's functions. Therefore, all operators describing interaction of MM valence electrons and N−MN-M core electrons (the core part of the Hartree-Fock Hamiltonian VN−MV^{N-M}, the correlation potential Σ^1(r,r′,E)\hat\Sigma_1({\bf r},{\bf r'},E) and the screening of interaction between valence electrons by the core electrons Σ^2\hat\Sigma_2) may be calculated with all MM valence electrons removed. This allows one to avoid subtraction diagrams which make accurate inclusion of the core-valence correlations for M>2M>2 prohibitively complicated. Then the CI Hamiltonian for MM valence electrons is calculated using orbitals in complete VNV^{N} potential (the mean field produced by all electrons); Σ^1\hat\Sigma_1 + Σ^2\hat\Sigma_2 are added to the CI Hamiltonian to account for the core-valence correlations. We calculate Σ^1\hat\Sigma_1 and Σ^2\hat\Sigma_2 using many-body perturbation theory in which dominating classes of diagrams are included in all orders. We use neutral Xe I and all positive ions up to Xe VIII as a testing ground. We found that the core electron density for all these systems is practically the same. Therefore, we use the same Σ^1\hat\Sigma_1 and Σ^2\hat\Sigma_2 to build the CI Hamiltonian in all these systems (M=1,2,3,4,5,6,7,8M=1,2,3,4,5,6,7,8). Good agreement with experiment for energy levels and Land\'{e} factors is demonstrated for all cases from Xe I to Xe VIII.Comment: 13 pages, 5 figure

    Assembly, Structure, and Reactivity of Cu\u3csub\u3e4\u3c/sub\u3eS and Cu\u3csub\u3e3\u3c/sub\u3eS Models for the Nitrous Oxide Reductase Active Site, Cu\u3csub\u3eZ\u3c/sub\u3e*

    Get PDF
    Bridging diphosphine ligands were used to facilitate the assembly of copper clusters with single sulfur atom bridges that model the structure of the CuZ* active site of nitrous oxide reductase. Using bis(diphenylphosphino)amine (dppa), a [CuI4(μ4-S)] cluster with N–H hydrogen bond donors in the secondary coordination sphere was assembled. Solvent and anion guests were found docking to the N–H sites in the solid state and in the solution phase, highlighting a kinetically viable pathway for substrate introduction to the inorganic core. Using bis(dicyclohexylphosphino)methane (dcpm), a [CuI3(μ3-S)] cluster was assembled preferentially. Both complexes exhibited reversible oxidation events in their cyclic voltammograms, making them functionally relevant to the CuZ* active site that is capable of catalyzing a multielectron redox transformation, unlike the previously known [CuI4(μ4-S)] complex from Yam and co-workers supported by bis(diphenylphosphino)methane (dppm). The dppa-supported [CuI4(μ4-S)] cluster reacted with N3–, a linear triatomic substrate isoelectronic to N2O, in preference to NO2–, a bent triatomic. This [CuI4(μ4-S)] cluster also bound I–, a known inhibitor of CuZ*. Consistent with previous observations for nitrous oxide reductase, the tetracopper model complex bound the I– inhibitor much more strongly and rapidly than the substrate isoelectronic to N2O, producing unreactive μ3-iodide clusters including a [Cu3(μ3-S)(μ3-I)] complex related to the [Cu4(μ4-S)(μ2-I)] form of the inhibited enzyme

    A Cu\u3csub\u3e4\u3c/sub\u3eS Model for the Nitrous Oxide Reductase Active Sites Supported Only by Nitrogen Ligands

    Get PDF
    To model the (His)7Cu4Sn (n = 1 or 2) active sites of nitrous oxide reductase, the first Cu4(μ4-S) cluster supported only by nitrogen donors has been prepared using amidinate supporting ligands. Structural, magnetic, spectroscopic, and computational characterization is reported. Electrochemical data indicates that the 2-hole model complex can be reduced reversibly to the 1-hole state and irreversibly to the fully reduced state

    Oblique-Basis Calculations for 44^{44}Ti

    Full text link
    The spectrum and wave functions of 44^{44}Ti are studied in oblique-basis calculations using spherical and SU(3) shell-model states. Although the results for 44^{44}Ti are not as good as those previously reported for 24^{24}Mg, due primarily to the strong spin-orbit interaction that generates significant splitting of the single-particle energies that breaks the SU(3) symmetry, a more careful quantitative analysis shows that the oblique-basis concept is still effective. In particular, a model space that includes a few SU(3) irreducible representations, namely, the leading irrep (12,0) and next to the leading irrep (10,1) including its spin S=0 and 1 states, plus spherical shell-model configurations (SSMC) that have at least two valence nucleons confined to the f7/2f_{7/2} orbit -- the SM(2) states, provide results that are compatible with SSMC with at least one valence nucleon confined to the f7/2f_{7/2} orbit -- the SM(3) states.Comment: 3 pages, no figures, contribution to Computational and Group Theoretical Methods in Nuclear Physics, Playa del Carmen, Mexico, February 18-21, 200
    • …
    corecore