2,832 research outputs found

    An EMG & Motion Analysis Study of the Elliptical Trainer

    Get PDF
    Background and Purpose The purpose of this study is to describe lower extremity muscle activity and joint range of motion while moving both forward and backward on an elliptical trainer at minimum and maximum inclines. Subjects Ten healthy subjects (7 female and 3 male) gave informed consent to voluntarily participate in this study. Methods A single group experimental design was used. A maximum contraction was performed for comparison measure and electromyographic (EMG) data was collected while the subjects performed the stride at the specified variables. Results The vastus lateralis was the most active of all the muscles throughout the entire experiment. The gluteus maxim us had, on average, the least amount of muscle activity. The biceps femoris was more active during forward stride than backward stride while the rectus femoris was more active during the backward stride. Conclusion and Discussion The results of this study are inconsistent with the manufacturer\u27s claims

    Maize fortification: update on organoleptic studies of various types of maize flours and cooked maize porridges

    Get PDF
    In flour fortification, a premix containing micronutrients (vitamins and minerals) is added in low dosages to wheat flour or maize meal. It is of uppermost importance that the premix does not cause any changes in the sensory properties of the finished products. In this presentation, the impact of fortificants on the sensory properties of maize meal porridge is discussed

    Shadow epitaxy for in-situ growth of generic semiconductor/superconductor devices

    Full text link
    Uniform, defect-free crystal interfaces and surfaces are crucial ingredients for realizing high-performance nanoscale devices. A pertinent example is that advances in gate-tunable and topological superconductivity using semiconductor/superconductor electronic devices are currently built on the hard proximity-induced superconducting gap obtained from epitaxial indium arsenide/aluminium heterostructures. Fabrication of devices requires selective etch processes; these exist only for InAs/Al hybrids, precluding the use of other, potentially superior material combinations. We present a crystal growth platform -- based on three-dimensional structuring of growth substrates -- which enables synthesis of semiconductor nanowire hybrids with in-situ patterned superconductor shells. This platform eliminates the need for etching, thereby enabling full freedom in choice of hybrid constituents. We realise and characterise all the most frequently used architectures in superconducting hybrid devices, finding increased yield and electrostatic stability compared to etched devices, along with evidence of ballistic superconductivity. In addition to aluminium, we present hybrid devices based on tantalum, niobium and vanadium. This is the submitted version of the manuscript. The accepted, peer reviewed version is available from Advanced Materials: http://doi.org/10.1002/adma.201908411 Previous title: Shadow lithography for in-situ growth of generic semiconductor/superconductor device

    Long-Term Changes in Aluminum Fractions of Drainage Waters in Two Forest Catchments with Contrasting Lithology

    Get PDF
    Aluminum (Al) chemistry was studied in soils and waters of two catchments covered by spruce (Picea abies) monocultures in the Czech Republic that represent geochemical end-members of terrestrial and aquatic sensitivity to acidic deposition. The acid-sensitive Lysina catchment, underlain by granite, was compared to the acid-resistant Pluhův Bor catchment on serpentine. Organically-bound Al was the largest pool of reactive soil Al at both sites. Very high median total Al (Alt) concentrations (40 μmol L−1) and inorganic monomeric Al (Ali) concentrations (27 μmol L−1) were observed in acidic (pH 4.0) stream water at Lysina in the 1990s and these concentrations decreased to 32 μmol L−1 (Alt) and 13 μmol L−1 (Ali) in the 2000s. The potentially toxic Ali fraction decreased in response to long-term decreases in acidic deposition, but Ali remained the largest fraction. However, the organic monomeric (Alo) and particulate (Alp) fractions increased in the 2000s at Lysina. In contrast to Lysina, marked increases of Alt concentrations in circum-neutral waters at Pluhův Bor were observed in the 2000s in comparison with the 1990s. These increases were entirely due to the Alp fraction, which increased more than 3-fold in stream water and up to 8-fold in soil water in the A horizon. Increase of Alp coincided with dissolved organic carbon (DOC) increases. Acidification recovery may have increased the content of colloidal Al though the coagulation of monomeric Al

    Medium effects on phi decays to dilepton and kaon-antikaon pairs in relativistic heavy ion reactions

    Get PDF
    We consider the role of rescattering of secondary kaons on the dilepton branching ratio of the phi meson. In-medium mass modifications and broadening of kaons and phi mesons are taken into account. We find in the framework of a Bjorken scenario for the time evolution of the expanding fireball that the phi yield from dimuons is moderately or at least only slightly enhanced compared to that from kaon-antikaon pairs. The relation to experimental yields measured by the NA49, NA50 and CERES Collaborations at CERN SPS and the PHENIX Collaboration at RHIC is discussed.Comment: 6 pages with 2 figures, accepted for publication in Eur. Phys. J.

    Spin accumulation induced resistance in mesoscopic ferromagnet/ superconductor junctions

    Get PDF
    We present a description of spin-polarized transport in mesoscopic ferromagnet-superconductor (F/S) systems, where the transport is diffusive, and the interfaces are transparent. It is shown that the spin reversal associated with Andreev reflection generates an excess spin density close to the F/S interface, which leads to a spin contact resistance. Expressions for the contact resistance are given for two terminal and four terminal geometries. In the latter the sign depends on the relative magnetization of the ferromagnetic electrodes.Comment: RevTeX 10 pages, 4 figures, submitted to Phys.Rev. Let

    Spin injection and spin accumulation in all-metal mesoscopic spin valves

    Get PDF
    We study the electrical injection and detection of spin accumulation in lateral ferromagnetic metal-nonmagnetic metal-ferromagnetic metal (F/N/F) spin valve devices with transparent interfaces. Different ferromagnetic metals, permalloy (Py), cobalt (Co) and nickel (Ni), are used as electrical spin injectors and detectors. For the nonmagnetic metal both aluminium (Al) and copper (Cu) are used. Our multi-terminal geometry allows us to experimentally separate the spin valve effect from other magneto resistance signals such as the anomalous magneto resistance (AMR) and Hall effects. We find that the AMR contribution of the ferromagnetic contacts can dominate the amplitude of the spin valve effect, making it impossible to observe the spin valve effect in a 'conventional' measurement geometry. In a 'non local' spin valve measurement we are able to completely isolate the spin valve signal and observe clear spin accumulation signals at T=4.2 K as well as at room temperature (RT). For aluminum we obtain spin relaxation lengths (lambda_{sf}) of 1.2 mu m and 600 nm at T=4.2 K and RT respectively, whereas for copper we obtain 1.0 mu m and 350 nm. The spin relaxation times tau_{sf} in Al and Cu are compared with theory and results obtained from giant magneto resistance (GMR), conduction electron spin resonance (CESR), anti-weak localization and superconducting tunneling experiments. The spin valve signals generated by the Py electrodes (alpha_F lambda_F=0.5 [1.2] nm at RT [T=4.2 K]) are larger than the Co electrodes (alpha_F lambda_F=0.3 [0.7] nm at RT [T=4.2 K]), whereas for Ni (alpha_F lambda_F<0.3 nm at RT and T=4.2 K) no spin signal is observed. These values are compared to the results obtained from GMR experiments.Comment: 16 pages, 12 figures, submitted to PR
    • …
    corecore