643 research outputs found
Modern Prescription Theory and Application: Realistic Expectations for Speech Recognition With Hearing Aids
A major decision at the time of hearing aid fitting and dispensing is the amount of amplification to provide listeners (both adult and pediatric populations) for the appropriate compensation of sensorineural hearing impairment across a range of frequencies (e.g., 160?10000?Hz) and input levels (e.g., 50?75?dB sound pressure level). This article describes modern prescription theory for hearing aids within the context of a risk versus return trade-off and efficient frontier analyses. The expected return of amplification recommendations (i.e., generic prescriptions such as National Acoustic Laboratories?Non-Linear 2, NAL-NL2, and Desired Sensation Level Multiple Input/Output, DSL m[i/o]) for the Speech Intelligibility Index (SII) and high-frequency audibility were traded against a potential risk (i.e., loudness). The modeled performance of each prescription was compared one with another and with the efficient frontier of normal hearing sensitivity (i.e., a reference point for the most return with the least risk). For the pediatric population, NAL-NL2 was more efficient for SII, while DSL m[i/o] was more efficient for high-frequency audibility. For the adult population, NAL-NL2 was more efficient for SII, while the two prescriptions were similar with regard to high-frequency audibility. In terms of absolute return (i.e., not considering the risk of loudness), however, DSL m[i/o] prescribed more outright high-frequency audibility than NAL-NL2 for either aged population, particularly, as hearing loss increased. Given the principles and demonstrated accuracy of desensitization (reduced utility of audibility with increasing hearing loss) observed at the group level, additional high-frequency audibility beyond that of NAL-NL2 is not expected to make further contributions to speech intelligibility (recognition) for the average listener
Effects of Degree and Configuration of Hearing Loss on the Contribution of High- and Low-Frequency Speech Information to Bilateral Speech Understanding
Objectives: The purpose of this study was to examine the effects of degree and configuration of hearing loss on the use of, and benefit from, information in amplified high- and low-frequency speech presented in background noise.
Design: Sixty-two adults with a wide range of high- and low-frequency sensorineural hearing loss (5 to 115+ dB HL) participated in the study. To examine the contribution of speech information in different frequency regions, speech understanding in noise was assessed in multiple low- and high-pass filter conditions, as well as a band-pass (713 to 3534 Hz) and wideband (143 to 8976 Hz) condition. To increase audibility over a wide frequency range, speech and noise were amplified based on each individual\u27s hearing loss. A stepwise multiple linear regression approach was used to examine the contribution of several factors to (1) absolute performance in each filter condition and (2) the change in performance with the addition of amplified high- and low-frequency speech components.
Results: Results from the regression analysis showed that degree of hearing loss was the strongest predictor of absolute performance for low- and high-pass filtered speech materials. In addition, configuration of hearing loss affected both absolute performance for severely low-pass filtered speech and benefit from extending high-frequency (3534 to 8976 Hz) bandwidth. Specifically, individuals with steeply sloping high-frequency losses made better use of low-pass filtered speech information than individuals with similar low-frequency thresholds but less high-frequency loss. In contrast, given similar high-frequency thresholds, individuals with flat hearing losses received more benefit from extending high-frequency bandwidth than individuals with more sloping losses.
Conclusions: Consistent with previous work, benefit from speech information in a given frequency region generally decreases as degree of hearing loss in that frequency region increases. However, given a similar degree of loss, the configuration of hearing loss also affects the ability to use speech information in different frequency regions. Except for individuals with steeply sloping high-frequency losses, providing high-frequency amplification (3534 to 8976 Hz) had either a beneficial effect on, or did not significantly degrade, speech understanding. These findings highlight the importance of extended high-frequency amplification for listeners with a wide range of high-frequency hearing losses, when seeking to maximize intelligibility
Penelope--the Story Weaver
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1996.Includes bibliographical references (leaf 116).by Willie E. Johnson, Jr.M.Eng
Hearing-Aid Safety: A Comparison of Estimated Threshold Shifts for Gains Recommended by Nal-Nl2 and Dsl M[i/O] Prescriptions for Children
Objective: To investigate the predicted threshold shift associated with the use of nonlinear hearing aids fitted to the NAL-NL2 or the DSL m[i/o] prescription for children with the same audiograms. For medium and high input levels, we asked: (1) How does predicted asymptotic threshold shifts (ATS) differ according to the choice of prescription? (2) How does predicted ATS vary with hearing level for gains prescribed by the two prescriptions? Design: A mathematical model consisting of the modified power law combined with equations for predicting temporary threshold shift (Macrae, 1994b) was used to predict ATS. Study sample: Predicted threshold shift were determined for 57 audiograms at medium and high input levels. Results: For the 57 audiograms, DSL m[i/o] gains for high input levels were associated with increased risk relative to NAL-NL2. The variation of ATS with hearing level suggests that NAL-NL2 gains became unsafe when hearing loss \u3e 90 dB HL. The gains prescribed by DSL m[i/o] became unsafe when hearing loss \u3e 80 dB HL at a medium input level, and \u3e 70 dB HL at a high input level. Conclusion: There is a risk of damage to hearing for children using nonlinear amplification. Vigilant checking for threshold shift is recommended
An IR Search for Extinguished Supernovae in Starburst Galaxies
IR and Radio band observations of heavily extinguished regions in starburst
galaxies suggest a very high SN rate associated with such regions. Optically
measured supernova (SN) rates may therefore underestimate the total SN rate by
factors of up to 10, due to the high extinction to SNe in starburst regions.
The IR/radio SN rates come from a variety of indirect means, however, which
suffer from model dependence and other problems.
We describe a direct measurement of the SN rate from a regular patrol of
starburst galaxies done with K' band imaging to minimize the effects of
extinction. A collection of K' measurements of core-collapse SNe near maximum
light is presented. Results of a preliminary SN search using the MIRC camera at
the Wyoming IR Observatory (WIRO), and an improved search using the ORCA optics
are described. A monthly patrol of starburst galaxies within 25 Mpc should
yield 1.6 - 9.6 SNe/year. Our MIRC search with low-resolution (2.2" pixels)
failed to find extinguished SNe, limiting the SN rate outside the nucleus (at >
15" radius) to less than 3.8 Supernova Rate Units (SRU or SNe/century/10^10
L(solar); 90% confidence). The MIRC camera had insufficient resolution to
search nuclear starburst regions, where SN activity is concentrated, explaining
why we found no heavily obscured SNe. We conclude that high-resolution, small
field SN searches in starburst nuclei are more productive than low resolution,
large-field searches, even for our large galaxies. With our ORCA
high-resolution optics, we could limit the total SN rate to < 1.3 SRU at 90%
confidence in 3 years of observations, lower than the most pessimistic
estimate.Comment: AJ Submitted 1998 Dec. 13. View figures and download all as one file
at http://panisse.lbl.gov/public/bruce/irs
Factors Affecting Youth Voice in Decision-Making Processes within Youth Development Programs
Results of a study aimed at determining the factors affecting the level of inclusiveness of youth voice in the decision-making process of the 4-H youth development program are discussed in this paper. State and field level 4-H professionals identified potential factors which affect youth voice in the decision-making process. The information gathered was utilized to identify the degree to which youth voice was incorporated in the decision-making process, to better understand how to suit youth’s needs, identify promising practices, and diagnose barriers towards fostering youth voice within the 4-H youth development program. This feature article presents the findings of the study, and discusses potential ramifications and remedies
Evaluation of Life History Diversity, Habitat Connectivity, and Survival Benefits Associated with Habitat Restoration Actions in the Lower Columbia River and Estuary, Annual Report 2009
This report describes the 2009 research conducted under the U.S. Army Corps of Engineers (USACE or Corps) project EST-09-P-01, titled “Evaluation of Life History Diversity, Habitat Connectivity, and Survival Benefits Associated with Habitat Restoration Actions in the Lower Columbia River and Estuary.” The research was conducted by the Pacific Northwest National Laboratory, Marine Science Laboratory and Hydrology Group, in partnership with the University of Washington, School of Aquatic and Fishery Sciences, Columbia Basin Research, and Earl Dawley (NOAA Fisheries, retired). This Columbia River Fish Mitigation Program project, referred to as “Salmonid Benefits,” was started in FY 2009 to evaluate the state-of-the science regarding the ability to quantify the benefits to listed salmonids1 of habitat restoration actions in the lower Columbia River and estuary
- …