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Original Article

Modern Prescription Theory and
Application: Realistic Expectations for
Speech Recognition With Hearing Aids

Earl E. Johnson1,2

Abstract

A major decision at the time of hearing aid fitting and dispensing is the amount of amplification to provide listeners (both

adult and pediatric populations) for the appropriate compensation of sensorineural hearing impairment across a range of

frequencies (e.g., 160–10000 Hz) and input levels (e.g., 50–75 dB sound pressure level). This article describes modern pre-

scription theory for hearing aids within the context of a risk versus return trade-off and efficient frontier analyses. The

expected return of amplification recommendations (i.e., generic prescriptions such as National Acoustic Laboratories—Non-

Linear 2, NAL-NL2, and Desired Sensation Level Multiple Input/Output, DSL m[i/o]) for the Speech Intelligibility Index (SII)

and high-frequency audibility were traded against a potential risk (i.e., loudness). The modeled performance of each pre-

scription was compared one with another and with the efficient frontier of normal hearing sensitivity (i.e., a reference point

for the most return with the least risk). For the pediatric population, NAL-NL2 was more efficient for SII, while DSL m[i/o]

was more efficient for high-frequency audibility. For the adult population, NAL-NL2 was more efficient for SII, while the two

prescriptions were similar with regard to high-frequency audibility. In terms of absolute return (i.e., not considering the risk

of loudness), however, DSL m[i/o] prescribed more outright high-frequency audibility than NAL-NL2 for either aged popu-

lation, particularly, as hearing loss increased. Given the principles and demonstrated accuracy of desensitization (reduced

utility of audibility with increasing hearing loss) observed at the group level, additional high-frequency audibility beyond that of

NAL-NL2 is not expected to make further contributions to speech intelligibility (recognition) for the average listener.

Keywords

modern prescription theory, hearing aids, speech recognition, realistic expectations, efficiency

Introduction

The assignment of gain across frequencies (e.g.,
160–10000Hz) for the improvement of speech under-
standing has been an overarching goal of recommending
hearing aid amplification for the past 100 years in both
electronic developments and clinical practice advance-
ments. The implementation of the particulars, pertaining
to the overarching goal, has taken many different forms
with specific formulas, methods, and recommendations.
As in any subject area, generally there is greater credit/
more success with some forms of implementation than
other forms. In the case of hearing aids, this is also true.
A brief part of this introduction is devoted to some past
and current forms of implementation more commonly
known as prescriptions. A general goal of prescription
development for hearing aids is the application of rec-
ommended amplification to real patients wearing hearing

aids to serve the best interests of patients usually in the
outcome domain of improving speech recognition.
Forthcoming in this article is the demonstration that
given the recommended amplification of prescriptions,
realistic expectations for speech recognition across a
wide variety of sensorineural hearing loss magnitudes
and configurations in both quiet and noisy listening
environments can be closely approximated for a highly
specified average listener of various ages.
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Even though many individuals with hearing impair-
ment have difficulty understanding speech in noise, iron-
ically, to date, prescriptions have focused almost
exclusively on recommending gain–frequency responses
that optimize speech intelligibility in quiet. A justifica-
tion for this approach is that the gain–frequency
response that provides the best speech intelligibility per-
formance in quiet is the best for speech intelligibility
performance in noise, as was demonstrated recently by
Crukley and Scollie (2012), who indicated, however, that
the prescription may need to differ for speech in quiet
versus speech in noise listening to alleviate aversive loud-
ness. Before reviewing some of the specifics of certain
prescriptions, a general framework on which prescrip-
tions operate is needed. The framework of operation is
of relevance to substantiate that amplification for hear-
ing aids, designed to remediate hearing loss, can be
expressed in the proposed concept of modern prescrip-
tion theory (MPT).

Modern Prescription Theory

MPT is predicated on the observation that a trading
relationship exists between a desired outcome (return)
and an undesired consequence (risk). A prominent illus-
tration of this observation, unrelated to hearing aids,
was the seminal introduction of financial portfolio allo-
cation (investment) under uncertainty (Markowitz,
1952), which later became known as modern portfolio
theory. In modern portfolio theory, Markowitz suc-
cinctly demonstrated that optimal allocations of invest-
ments within a portfolio (ones that approximated the
efficient frontier) could achieve the maximal return on
investment for a given amount of risk.

With application of the concepts in modern portfolio
theory, MPT for hearing aids, newly developed and pre-
sented herein, proposes that desired outcomes/returns
(e.g., speech intelligibility, high-frequency audibility)
can be traded against undesired risks (e.g., too much
loudness). In MPT for hearing aids, the trading relation-
ship of return versus risk for a listener with normal hear-
ing sensitivity (i.e., 0 dB hearing level [HL]) is put forth
as the means for establishing the efficient frontier. From
establishment of the efficient frontier, the recommenda-
tions of prescription methods for fitting hearing aids to
individuals with hearing loss can be compared with one
another and with the normal hearer. The goal of com-
paring with the normal hearer, however, is not for pre-
scription recommendations to make amplified speech for
individuals with hearing loss like the normal hearer.
Rather, the goal is to assess the degree to which individ-
uals with hearing loss function as well as the normal
hearer given the recommended amplification of a pre-
scription and signal-to-noise ratio (SNR)-changing tech-
nologies. Thus, given a stated return of interest and

accompanying presumed risk, prescription methods
that more closely approximate the efficient frontier of
the listener with normal hearing sensitivity are, as pre-
sented in this article, more efficient (better) than methods
that are less efficient (worse). In this manner, MPT for
hearing aids operates like modern portfolio theory for
financial asset allocation in an investment portfolio.

Existing methods of comparing the performance of
prescriptions, without an efficient frontier approach,
in very recent years has been to compare performance
on isolated dependent variables (e.g., insertion gain, real-
ear output, speech intelligibility, speech recognition,
loudness, and audibility). For example, the loudness of
speech at low, medium, and high input levels for a lis-
tener with normal hearing sensitivity is sometimes used
as a reference point for comparing prescriptions. Such
loudness reference points were used in a recent publica-
tion by Ching et al. (in press), where a low speech level of
52dB sound pressure level (SPL) yielded 8.5 sones of loud-
ness, a medium speech level of 65dB SPL yielded 18.6
sones of loudness, and a high speech level of 76dB SPL
yielded 41.7 sones of loudness for children listening to a
NAL-NL2 prescription. At each of these speech levels,
though, including even the low-level speech, the listener
with normal hearing sensitivity had already reached an
asymptotic return for both speech intelligibility and high-
frequency audibility. The ability to compare the perform-
ance of prescriptions with that of the listener with normal
hearing sensitivity was consequently not meaningful.

Therefore, MPT was designed to not compare per-
formance but rather the efficiency of prescriptions.
Focusing on efficiency rather than performance, with
regard to loudness, is scientifically defensible because
restoring loudness perception to that of the normal
hearer is now regarded as philosophically flawed with
regard to the observations of preferences and behaviors
of individuals with hearing impairment who wear hear-
ing aids (for a review, see Elberling, 1999; Keidser,
Dillon, Carter, & O’Brien, 2012). That is, neither nor-
malizing nor equalizing loudness perception to that of
the normal hearer is the goal of modern-day prescrip-
tions as was true for early prescriptions a decade ago.
Instead, hearing-impaired listeners prefer about half the
loudness of a normal hearer when listening to a conver-
sational speech input level (Smeds et al., 2006a, 2006b).
Efficiency is further logical as a means of comparison
because prescriptions, at least well-validated ones, are
already commonly regarded as ensuring adequate benefit
and satisfactory outcomes for patients at the group level
(Abrams, Chisolm, McManus, & McArdle, 2012; H.
Mueller, 2005; Valente et al., 2006).

Within the context of hearing aid amplification, the
most generalized assets allocated in a hearing aid fitting
are prescribed gain values across frequencies (i.e., the
gain–frequency response), which is akin to allocating
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assets across investments in keeping with the extension of
modern portfolio theory to MPT. Prescribed gain values,
which vary with respect to input level (i.e., the definition
of amplitude compression), when added to the input
level, determine the prescribed output level. As a result
of gain or output allocation across frequencies, a result-
ing inevitable trade-off is perceived loudness by the
wearer of hearing aids. The term trade-off is used
because, while loudness is often acceptable to a point,
uncomfortable or excessive loudness can be a predomin-
ant reason for rejecting amplification (e.g., Cox,
Alexander, Taylor, & Gray, 1997; Pascoe, 1988; Smeds
et al., 2006a, 2006b). Controlling for excessive, but
ensuring adequate, loudness has often been considered
in the development of prescriptions for hearing aids.

The return on the prescribed gain and accompanying
output values then can be any number of outcome meas-
ures (e.g., speech intelligibility, high-frequency audibil-
ity, patient benefit, and patient satisfaction). Within the
context of speech intelligibility and high-frequency audi-
bility, this article will discuss the two most prominent
generic prescription methods for hearing aids, each
with an approximate 40-year history, spanning linear
and nonlinear eras of amplification. Again, the most
generalized risk for prescriptions that ensure returns of
sufficient speech intelligibility and high-frequency audi-
bility performance is excessive loudness. Thus, prescrip-
tions embody much of the preceding research on optimal
frequency responses to ensure these two returns while
managing risk (e.g., Humes, 1996; Pascoe, 1975, 1988;
Skinner, 1980; Skinner, Karstaedt, & Miller, 1982). MPT
is hence a means to compare the efficiency of different
prescriptions.

Modern-Day Generic Prescriptions

The progression of two modern-day prescriptions exists
in the current implementation of the Australian National
Acoustic Laboratories—Non-Linear 2 (NAL-NL2) and
the University of Western Ontario implementation of the
Desired Sensation Level Multiple Input/Output (DSL
m[i/o]). NAL-NL2 seeks to maximize the Speech
Intelligibility Index (SII) with the constraint of not
exceeding the perceived loudness of a listener with
normal hearing sensitivity (Dillon, 2006; Keidser &
Dillon, 2006; Keidser et al., 2012; Keidser, Dillon,
Flax, Ching, & Brewer, 2011). DSL m[i/o] seeks to
ensure audibility of amplified speech with consideration
of loudness comfort (Scollie et al., 2005; Seewald,
Moodie, Scollie, & Bagatto, 2005).

Stated differently, but important to clearly convey
meaning, NAL-NL2 prescribes audibility to frequencies
that are useful to speech recognition (i.e., offers an incre-
mental improvement of >0.00 SII units) and intention-
ally does not prescribe audibility to frequencies that are

useless to speech recognition (i.e., where consideration of
the sensation level/audibility, band importance func-
tions, and the desensitization factor result in 0.00 add-
itional SII units). The upper limit on the prescribed
desired sensation levels of NAL-NL2 is how much utility
for speech recognition can be extracted from the SII of
useful frequencies, while simultaneously referencing the
Moore and Glasberg (2004) loudness model as an add-
itional means to place a cap on the amount of recom-
mended sensation levels. In contrast, DSL m[i/o]
attempts to maximize bandwidth (audibility of frequen-
cies), with the intent of ensuring access to speech cues
that could possibly improve speech recognition.
Therefore, DSL m[i/o], while considering loudness com-
fort based on past subjective evaluation of individuals
with hearing impairment, makes no assertion about
when audibility is useless and assumes audibility in the
range of frequencies relevant to speech understanding
(e.g., 160–10000Hz) could be useful to speech recogni-
tion, no matter the severity of loss, as a means to deter-
mine the recommended amplitude–compression
frequency response. Consequently, the two prescriptions
operate on two different philosophies (one prioritizes SII
units and one prioritizes audible bandwidth); the result is
differing desired sensation levels and loudness.

Speech intelligibility modeling. The SII model is a standar-
dized method of calculating audibility of a speech signal
for predicting speech intelligibility (American National
Standards Institute [ANSI] S3.5-1997, 2007). The SII is
represented by the following equation:

SII ¼
X

IiAi, ð1Þ

where Ii is the function that characterizes the importance
of the ith frequency band for speech intelligibility and Ai

expresses the proportion of the speech dynamic range in
the ith frequency band that is above the listener’s hearing
threshold.

The SII model has been successfully used to predict
speech scores for different types of speech material for
listeners with normal hearing. The model has previously
overestimated performance, however, for listeners with
hearing loss because of a lack of agreement between
audibility and intelligibility. The amount of intelligible
speech information that can be extracted from an audible
signal decreases as hearing loss increases (Carhart, 1951;
Ching, Dillon, & Byrne, 1998; Hogan & Turner, 1998;
Pavlovic, Studebaker, & Sherbecoe, 1986; Studebaker,
Sherbecoe, McDaniel, & Gray, 1997). This decreased
ability of the impaired ear is commonly referred to as
hearing loss desensitization (HLD) and has recently been
demonstrated as not frequency specific (Ching, Dillon,
Lockhart, van Wanrooy, & Flax, 2011; Johnson &
Dillon, 2011), consistent with the results and
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interpretation of findings from Hornsby and Ricketts
(2003) and Hornsby, Johnson, and Picou (2011).
Desensitization is a broad estimate of suprathreshold
distortion based on the magnitude of the hearing loss
to reflect impaired auditory function in domains such
as frequency resolution and temporal processing.
Bernstein, Summers, Grassi, and Grant (2013) demon-
strated the improvement to speech intelligibility esti-
mates that is achieved when measures of
suprathreshold distortion were added to auditory
models of audibility-based SII calculations. In essence,
speech recognition will be overestimated if an audibility-
based SII calculation does not allow for desensitization.
The overestimation is larger when the hearing threshold
exceeds approximately 60 dB HL because suprathreshold
distortion increases with accompanying damage to inner
hair cells in the cochlea. Therefore, the SII model needs
modification to include HLD (Ching et al., 1998, 2011;
Humes, 2002). This article has used both the ANSI S3.5-
1997 (2007) method of SII calculation without desensi-
tization (referred to as traditional) and the ANSI SII
calculation with desensitization (referred to as revised).
Input data to the SII model were (a) hearing sensitivity
thresholds from the 27 audiograms and (b) real-ear aided
response (REAR) values in one-third octave bands gen-
erated from the NAL-NL2 and DSL m[i/o]
prescriptions.

In applying the SII model to estimating speech intel-
ligibility for children, speech scores will be lower for chil-
dren than for adults at a given SII (Gustafson & Pittman,
2011; McCreery & Stelmachowicz, 2011; Scollie, 2008).
The observed difference between adult and child per-
formance was not, however, due to differences in the
contribution of frequency regions to speech recognition.
In other words that the frequency importance functions
(e.g., Pavlovic, 1994) in the standard SII calculation do
not need modification for children (McCreery &
Stelmachowicz, 2011). The pediatric group SII values,
calculated based on gain and output recommendations
by the two different prescriptions, are, therefore, reduced
by the age-related proficiency factor of Scollie (2008).
No age-related proficiency factor was used for the
adult SII data.

Although the SII has been used to compare pre-
scriptions for children (Ching et al., in press;
Stelmachowicz, Lewis, Kalberer, & Creutz, 1994), SII
is not the only measure of adequacy to consider (Ching
et al., in press; Stelmachowicz et al., 1994). The major
determinants for SII (based on audibility alone) are hear-
ing sensitivity thresholds and the amplified speech spec-
trum. Assuming noise is not present, a prescription that
applies enough gain and output at each frequency to
allow audibility of speech across frequencies should, in
turn, yield a higher SII value. SII values will not be
higher, though, when desensitization is assumed to

accompany substantial magnitudes of hearing loss (i.e.,
the expected performance based on repeated evidence to
date, e.g., Ching et al., 1998, 2011; Hogan & Turner,
1998; Pavlovic et al., 1986; Studebaker et al., 1997).
Even if amplification technology allows for the desired
gain and output for audibility, such amplification may
result in excessive saturation of the hearing aid. In prac-
tical applications, the prescriptions with a higher SII
value may result in excessive loudness (e.g., Rankovic,
1991) and potential threshold shifts, as a consequence
of hearing aid sound exposure levels (Macrae, 1994,
1995, 1996). These considerations require any
approach to evaluating hearing aid prescriptions to
include calculations of audibility across frequencies,
SII, and estimations of loudness. This multiple perspec-
tive approach is present in the proposal of MPT for
hearing aids.

High-frequency audibility. The audibility of speech is the
amount of sensation (in decibels SPL) that is above the
HL when the threshold is converted into decibels SPL.
Audibility is commonly reported as a function of fre-
quency. There are two ways to quantify audibility
known as peak and root mean square (RMS) audibility.
When the peak sensation level is below 0 dB SPL, the
frequency is referred to as completely inaudible. When
RMS sensation level is 0 dB, all the peaks of speech are
still audible. The focus on quantifying audibility at high
frequencies rather than lower frequencies is generally
because of the following:

1. Greater contribution to speech recognition by mid to
high frequencies (i.e., frequency importance func-
tions; e.g., Pavlovic, 1994) than by lower frequencies.

2. Improvement in the detection of word endings that
contain the phoneme /s/, particularly in the English
language, as the phoneme conveys meaning such as
plural or possessive form (e.g., Stelmachowicz,
Pittman, Hoover, & Lewis, 2001).

Loudness modeling. The perception of loudness has been
estimated accurately for individuals with normal hearing
and cochlear hearing loss by the Moore and Glasberg
(2004) model. As explained by Moore et al. (2010), the
model relies on two key concepts: (1) excitation pattern
along the basilar membrane transformed into an equiva-
lent rectangular bandwidth (ERBN) scale to represent
frequency and (2) specific loudness of the frequency-spe-
cific loudness density, measured in sones per ERB. The
ERBs are approximations of the filters in the human
auditory system, with bandwidth as a function of fre-
quency ( f ) given by the formula 0.108f þ 24.7 (Moore
& Glasberg, 1996). The formula relating ERBN to
frequency f (in kilohertz) is given in Glasberg
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and Moore (1990) as follows: ERBN� number¼
21.4log10(4.37fþ 1).

Specific loudness is calculated by frequency in the
ERBN scale from the amount by which excitation at
each frequency exceeds the threshold excitation at that
frequency (Moore & Glasberg, 1997, 2004). When spe-
cific loudness, N0, equals 0.00537 in any ERBN, the
energy level (E) of the input sound is sufficient to
excite the cochlea and a threshold response (ETHRQ) is
reached (i.e., E¼ETHRQ¼ 2.31). Overall loudness (in
units of sones and phons) is then calculated by summing
specific loudness across ERBs.

The calculation of specific loudness includes the effect
of hearing loss on the transfer function of the inner and
outer hair cells. Default assumptions of the model parti-
tioning loss between the inner and outer hair cells have
been adopted: Outer versus inner hair cell damage was
0.9 and 0.1, respectively, up to the maximum outer hair
cell loss of 57.6 dB HL (Moore & Glasberg, 2004). In
clinical practice, the amount of underlying outer versus
inner hair cell loss is almost always unknown.

The loudness model has been derived from adult data,
but there is no evidence to suggest that it needs modifi-
cation when applied to children (B. C. J. Moore, per-
sonal communication, February 6, 2013). Indeed, data
from Serpanos and Gravel (2004) revealed no significant
difference in loudness functions between children and
adults with normal hearing. Children with auditory
experience at high in-the-ear sound pressure levels from
amplification have been reported to prefer listening at
those levels (Scollie, Seewald, Moodie, & Dekok, 2000;
Scollie et al., 2010). Consequently, appropriate amplifi-
cation recommendations should include limits on the
loudness. Indeed, excessive amplification can potentially
cause deterioration of hearing loss due to, in essence,
noise exposure (e.g., Macrae, 1996). As observed by
Ching et al. (in press), and again demonstrated in this
article, NAL-NL2 and DSL m[i/o] are not similar to one
another with regard to the recommended limits of
loudness.

A Bigger Picture to Hearing Aid Product and
Service Provision Than Numbers of Prescriptions
and Modeling

No matter the brand or model of a hearing aid, the
following items are proposed as top priorities in the
treatment of hearing loss for patients who are candidates
for and choose to wear hearing aids.

1. To address the communication goals and listening
needs of the patient.

2. To ensure satisfaction with the recommended treat-
ment plan, as well as the fit, comfort, and aesthetics
of the physical device.

3. To lessen SNR loss caused by the suprathreshold
distortion component of sensorineural loss.

4. To establish realistic expectations of speech recogni-
tion performance.

5. To maximize suitable audibility (sensation level as a
function of frequency).

6. To provide the widest audible bandwidth deemed
effective.

7. To constrain loudness to an acceptable, but appro-
priately adequate, amount.

8. To ensure sound quality has favored clarity and
pleasantness.

9. To ensure the aforementioned priorities are realized
in such a manner to maximize the outcomes of indi-
vidual patients.

Together, the hearing health-care provider and patient
work together to ensure the first two priorities are met in
the rehabilitative model of hearing aid health-care deliv-
ery. The third priority can be addressed with hearing aid
product components such as directional microphone
technology, noise reduction technology, or wireless
remote microphone technology (Valente et al., 2006).
Prescriptions are, in the medical model of hearing aid
health-care delivery, best attempts to accomplish the
fourth through eighth priorities via numeric recommen-
dations of amplification. Because of philosophical differ-
ences in prescriptions, however, how these priorities are
accomplished and presumably how well the priorities are
accomplished are impacted by the prescription (num-
bers) with which the hearing aid is fit. Therefore, con-
sistent with the comparative approach (Carhart, 1946)
and demonstrated and discussed herein, there may well
be the need for patients to compare amplification offered
as treatment, even with the highly selective prescriptions,
available for hearing aids today. Synthesis of the num-
bers and words in an empathetic and personalized
manner by the hearing health-care professional with
the patient, blending what has been referred to vaguely
as the science and art of hearing aid fitting, is suggested
to consistently achieve favorable patient outcomes—the
ninth and ultimate priority.

Purpose of Work Described Herein

This study has taken the recommendations of the NAL-
NL2 and DSLm[i/o] prescriptions across a range of input
levels spanning 50 to 76 dB SPL for a number of varying
sensorineural hearing losses to identify similarities and
differences between the two prescriptions. A summary
of recent peer-reviewed research reporting on speech
intelligibility, high-frequency audibility, and loudness as
isolated dependent variables with the two prescriptions is
shown in Table 1. In essence, the recent research
reported on the performance of prescriptions on the
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isolated variables. This work expounds on those research
works by using MPT and efficient frontier analyses to
calculate the efficiency of prescriptions in a return
versus risk paradigm. Analyses are based on modeling
work from a well-validated and peer-reviewed model of
speech intelligibility (ANSI S3.5-1997, R2007) and loud-
ness (Moore & Glasberg, 2004), as well as the identifica-
tion of high-frequency RMS audibility from graphical
plots of REARs (ear canal SPLs) and ear canal SPLs of
hearing sensitivity thresholds. Taken collectively, the pur-
pose of this work is to quantify and describe the efficiency
of prescriptions, as well as to establish realistic expect-
ations of speech recognition performance with hearing
aids fit to prescription recommendations.

Methods

Subject Age Groups

Both adult (i.e., no-specific age) and pediatric (i.e.,
3 years old) designators were used in this study, and
the results will be reported separately for each age-
group. These two age groups were selected because
both DSL m[i/o] and NAL-NL2 have long acknowl-
edged that recommended amplification for adults and
children should not be the same.

Audiograms

Twenty-seven audiograms of a sensorineural type were
selected for use in this study and are consistent with the

mean and range of audiograms used by Ching et al.
(in press). The mean hearing sensitivity thresholds for
the left and right ears of 27 audiograms are reported
(see Figure 1, left) alongside the mean thresholds of
audiograms in Ching et al. (in press; see Figure 1,
right) for comparison purposes. Consistent with a popu-
lation of audiology patients, the 27 audiograms span a
wide magnitude and contain various configurations of
typically expected sensorineural losses (Wilson, 2011;
Wilson, Noe, Cruickshanks, Wiley, & Nondahl, 2010).
For children, the average real-ear to coupler difference
(RECD) of 3-year-old children was assumed because
that was the age of the children whose prescription tar-
gets were studied by Ching et al. (in press).

Input Speech Levels

The input speech levels designated as low, medium, and
high are representative of typical speech presentation
levels when verifying the prescription targets for real-
ear measures (e.g., 50, 65, and 75 dB SPL; G. Mueller,
Ricketts, & Bentler, 2013).

Real-Ear-Aided Gain and Response Targets

Real-ear-aided gain targets from the DSL m[i/o] and
NAL-NL2 prescriptive techniques were added to the
input speech levels, yielding the prescribed REAR
values (i.e., the output of a hearing aid in the ear
canal). These REAR values were entered into speech
intelligibility and loudness models.

Table 1. Summary of Recent Research Comparing DSL m[i/o] and NAL-NL2 on SII, Loudness, and High-Frequency Audibility.

DSL m[i/o] versus NAL-NL2

(equated for pure tone sensorineural hearing loss between prescriptions)

Adult

(Johnson & Dillon, 2011, for

SII and loudness; Trammell & Johnson,

2013, for high-frequency audibility)

Children

(Ching et al., in press, for SII and loudness;

Trammell & Johnson, 2013, for

high-frequency audibility)

SII (a return) Similar (only average speech at 65 dB

SPL was studied)

Similar for soft (52 dB SPL),

average (65 dB SPL), and loud (76 dB SPL) speech

High-frequency

audibility (a return)

DSL m[i/o] compared with NAL-NL2:

� 1206 Hz less for soft (50 dB SPL) speech

� 650 Hz greater for average

(65 dB SPL) speech

� 640 Hz greater for loud

(75 dB SPL) speech

DSL m[i/o] compared with NAL-NL2:

� 1585 Hz greater for soft (50 dB SPL) speech

� 1347 Hz greater for average (65 dB SPL) speech

� 921 Hz greater for loud (75 dB SPL) speech

Loudness (a risk) Similar (only average speech at

65 dB SPL was studied)

Similar for soft speech (52 dB SPL)

DSL m[i/o] has approximately twice the loudness of

NAL-NL2 for average speech (65 dB SPL)

DSL m[i/o] has approximately three times the loudness of

NAL-NL2 for loud speech (76 dB SPL)
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SII Modeling

In this study, to estimate speech intelligibility, a standar-
dized method of calculating audibility of a speech signal
for predicting speech intelligibility (ANSI S3.5-1997,
2007) was used and is referred to as ANSII SII herein.
To account for the distortion of sensorineural hearing
loss, desensitization was added to create a second estima-
tion herein referred to as reduced or desensitized SII.
Input data to the speech intelligibility models were hear-
ing sensitivity thresholds and REAR levels in one-third
octave bands generated from both the NAL-NL2 and
DSL m[i/o] prescriptions and each of the 27 audiograms.

Loudness Modeling

In this study, to create estimates of loudness, the Moore
and Glasberg (2004) loudness model was used. Input
data to the loudness model were hearing sensitivity
thresholds and REAR levels in one-third octave bands
generated from both the NAL-NL2 and DSL m[i/o] pre-
scriptions and each of the 27 audiograms.

High-Frequency Audibility

To obtain the high-frequency audibility, hearing sensitiv-
ity thresholds in decibels SPL and REAR levels of SPL
at the eardrum simply are compared for their relation to
one another as described in the following text.

For each of the audiograms, the audiometric thresh-
olds of both ears were entered into the Verifit (Audioscan,
2012) real-ear equipment in the appropriate left and right
ear fields. Age-appropriate average RECD values asso-
ciated with either the NAL-NL2 or DSL m[i/o]

prescription methods were used. The age choice options
of either adult or 36 months (3 years) were chosen to des-
ignate the desired adult or pediatric prescription. The
SpeechMap Speech-std (1) signal (i.e., carrot passage
from the Speech Intelligibility Rating test; Audioscan,
2012; Cox & McDaniel, 1989), which is shaped to the
international long-term average speech spectrum
(ILTASS; i.e., Byrne et al., 1994), was selected as the
speech stimulus because the ILTASS signal is used in
the DSL m[i/o] (Audioscan, 2012; Scollie et al., 2005)
and NAL-NL2 prescription methods. High-frequency
cutoffs of the prescribed frequency response (based on
RMS levels) for low (50 dB SPL), medium (65 dB SPL),
and high (75 dB SPL) input levels were determined by
locating the intersection with straight-line tools (rounding
to the nearest one-third octave frequency band) of the
right-most prescription output targets (REARs) and the
audiometric thresholds in SPL, just above (high-
frequency cutoff) the point where speech energy was
positive (audible). For example, in Figure 2, the highest
frequency with RMS audibility using the NAL-NL2 pre-
scriptive recommendation is indicated by the line segment
with an arrow pointing to the frequency axis, whereas
DSL m[i/o] recommends audibility across the entire
range of frequencies for the same audiogram.

Efficient Frontier of Normal Hearing Sensitivity

Data points for plotting the efficient frontier for a
normal listener with 0 dB HL thresholds across frequen-
cies were obtained by beginning at high-level speech plus
the real-ear unaided response of an average ear canal for
adults (Bentler & Pavlovic, 1992) or 3-year-old children
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(Kruger, 1987), accordingly. The high-level speech input
was then systematically decreased in 5-dB steps. Because
values were asymptotic above a soft speech level of 50 dB
SPL, data points for plotting the efficient frontier of the
listener with normal hearing sensitivity span a range of
speech levels below 50 dB SPL (soft speech).

The efficient frontier curves for normal hearing sensi-
tivity for each age population are given by the following
equations:

Pediatric

1. ANSI SII (y)¼Loudness (x), where
y ¼ 0:2829x0:3972

2. Desensitized SII (y)¼Loudness (x), where
y ¼ 0:2829x0:3972

3. High-frequency audibility (y)¼Loudness (x), where
y ¼ 5383:7x0:2694

Adult

1. ANSI SII (y)¼Loudness (x), where
y ¼ 0:5239x0:3972

2. Desensitized SII (y)¼Loudness (x), where
y ¼ 0:5239x0:3972

3. High-frequency audibility (y)¼Loudness (x), where
y ¼ 5383:7x0:2694

The reason the efficient frontier for normal hearing sen-
sitivity is equal for ANSI SII and desensitized SII (i.e.,

Equations 1 and 2 are the same for the pediatric
population, and Equations 4 and 5 are the same for
the adult population) is because with 0 dB HL thresholds
there is no desensitization (i.e., the desensitization factor
has no effect of reduction, as the 0 dB HL threshold
implies no distortion). The efficient frontier for SII is
different between the adult and pediatric populations
(Equation 1 vs. 4, as well as Equation 2 vs. 5) because
of the age-related proficiency factor of Scollie (2008) in
use for the pediatric data. The high-frequency audibility
versus loudness efficient frontier is the same for both
adults and children (Equations 3 and 6) because loudness
summation across frequency bandwidth is equivalent for
both populations according to the Moore and Glasberg
(2004) loudness model.

Improved Efficiency Analysis

The loudness of each audiogram, prescription, and input
level was used to calculate the return of interest (i.e., SII
or high-frequency audibility), as though the loudness had
originated from a listener with normal hearing sensitiv-
ity, which will be known as the reference location (i.e.,
the efficient frontier). The efficient frontier was then com-
pared against the actual performance data points for
each audiogram, prescription, and input level. The
Euclidean distance difference (i.e., interpreted herein as
a measure of efficiency) between the actual and the effi-
cient frontier could then be calculated. The difference
between NAL-NL2 and DSL m[i/o] prescriptions and
their individual efficiency can then be expressed as a per-
centage to compare one prescription with the other pre-
scription (i.e., prescription with a higher return/
prescription with a lower return �100).

Figure 2. A SpeechMap plot on the Audioscan Verifit of hearing sensitivity thresholds in decibels SPL and the accompanying NAL-NL2

(left panel) and DSL m[i/o] (right panel) real-ear aided response prescriptive targets which demonstrates audibility of frequencies.

Note. The vertical arrow points to the frequency at which root mean square audibility in the high frequencies is no longer present.
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Results

Pediatric Selection

SII versus loudness. The performance for DSL m[i/o]
(Figure 3, top) and NAL-NL2 (Figure 3, bottom) pre-
scriptions is plotted for SII versus loudness for low,
medium, and high input levels. The leftmost two panels
plot the ANSI S3.5 SII values on the ordinate axis, and
the rightmost two panels plot the desensitized or reduced
SII values on the ordinate axis. The larger marker points
indicate where the average data for amplified low (circle),
medium (X), and high (diamond) input levels are
located. Figure 3 indicates that DSL m[i/o] (top curves)
reveals greater loudness than NAL-NL2 as the spread of
data points span farther along the right of the abscissa.

The improved efficiency analysis, as previously
described, demonstrated with regard to return of SII
for the risk of loudness that NAL-NL2 has a clear
advantage over DSL m[i/o] (Figure 4). This finding is
evident for the ANSI SII (black bars) and desensitized
SII (white bars) calculations. A significant difference

(using multiple t-test comparisons) in the improved effi-
ciency (in percentages) relative to a 0% difference (i.e.,
no difference) between the two prescriptions is marked
with an asterisk in Figure 4, and the accompanying stat-
istical analysis is found in Table 2.

To demonstrate the impact of SII values on percent
correct scores for speech, transfer functions for the two
commonly used speech materials in clinical audiology;
that is, the Northwestern University-6 (NU-6; Studebaker,
Sherbecoe, & Gilmore, 1993) and Connected Speech Test
(CST; Humes, 2002; Sherbecoe & Studebaker, 2002,
2003) were used.

NU-6 % Score ¼ 100� 1� 10 �SII=0:404ð Þ
� �3:334� �

CST % Score ¼ 100� 1� 10 �SII=0:201ð Þ
� �22:226� �

The estimated percent correct score for each audio-
gram (unaided, aided with DSL m[i/o], and aided with
NAL-NL2) is plotted as a function of the 0.5 -, 1 -, and
2-kHz pure tone average (PTA; Figure 5). The NU-6
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Figure 3. Scatterplot of SII versus loudness when compared with the efficient frontier of the normal hearer for the pediatric population
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predictions are shown in the top panels, and the CST
predictions are shown in the bottom panels. The left
panels include the predictions based on the ANSI SII
values, and the right panels include the predictions
based on the desensitized SII. Hence, the benefit from
amplification for speech in quiet can be visualized.

In general, the scattergrams indicate scores for the
CST speech material plateau more quickly than pre-
dicted for the NU-6 material, which is consistent with
the sentence versus word nature of the two tests. In com-
parisons of the two prescriptions, the percent correct
ANSI SII predictions are better for the DSL m[i/o] pre-
scription than the NAL-NL2 prescription when the PTA
hearing loss exceeds approximately 60 dB HL. When the
predictions are desensitized (Figure 5, right) for increas-
ing hearing sensitivity thresholds, however, the expected
performance with the two prescriptions is near equiva-
lent. In other words, the estimated percent correct scores
decrease with desensitization, when compared with the
ANSI S3.5 SII values without desensitization, to yield
similar expected performance for both the DSL m[i/o]
and NAL-NL2 prescriptions.

Figure 6 (with second-order polynomial regression
trend lines) is reflective of the fact that with increasing
hearing loss, even when aided with well-validated generic
prescriptions, individuals are expected to have decreased
performance abilities to recognize speech. This concept is
often generalized in realistic expectations counseling for
hearing aids in clinical practice. Such counseling has
traditionally been without any quantified reference as
to the expectation, as no known quantified expectation(s)
exist based on published literature. The aforementioned
data provide a quantified expression of realistic expect-
ations for a typical listener of a given hearing loss.
In other words, once SII has been approximated, then
realistic expected amounts (e.g., percent) of speech rec-
ognition abilities can be predicted using previously pub-
lished transfer functions. Transfer functions for two
commonly used speech materials in clinical audiology
are provided by (a) Studebaker et al. (1993) for the
NU-6 words and (b) Sherbecoe and Studebaker (2002,
2003) for the CST sentences.

For example, in an auditory-only listening environ-
ment, without visual cues, an SII value of 0.5 is expected
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Figure 4. The improved efficiency for children fit with NAL-NL2 when compared with DSL m[i/o] in a return versus risk (SII vs.

loudness) analysis.

Note. The asterisk refers to a statistically significant difference between the two prescriptions in efficiency.

Table 2. t-Test Statistics on Whether the Improved Efficiency Calculation for Return of SII Was Better Than No Difference (0%) for the

Pediatric Population.

Statistical Difference in Efficiency Between DSL m[i/o] and NAL-NL2

Low Medium High

Average across

input levels

ANSI SII versus loudness t(26)¼ 16.507, p5.001 t(26)¼ 42.281, p5.001 t(26)¼ 99.109, p5.001 t(26)¼ 38.639, p5.001

Desensitized SII versus loudness t(26)¼ 20.011, p5.001 t(26)¼ 51.481, p5.001 t(26)¼ 281.98, p5.002 t(26)¼ 54.840, p5.001

Note. All the p values represent significant differences.
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to lead to percent correct scores of 82% and 93% on the
NU-6 and CST, respectively, for the typical listener.

Figure 6 shows the reduction in expected SII values as
a result of desensitization compared with no desensitiza-
tion (ANSI S3.5 SII). From these data (the white
squares), realistic expectations are essentially unaffected
by the prescription used (i.e., see the similar magnitude
and slope of the regression function for both NAL-NL2
and DSL m[i/o] for the desensitized SII data).

High-frequency audibility versus loudness. Plots of the per-
formance for DSL m[i/o] and NAL-NL2 prescriptions
for high-frequency audibility versus loudness are shown
in the top and bottom rows of Figure 7, respectively. The
larger marker points indicate where the average data for
amplified low (circle), medium (X), and high (diamond)
input levels are located. DSL m[i/o] is shown to have

more loudness than NAL-NL2, as the spread of data
points span farther along the right end of the abscissa.

The improved efficiency analysis demonstrated with
regard to return of high-frequency audibility for the
risk of loudness that DSL m[i/o] has a clear advantage
compared with NAL-NL2 (Figure 8). A significant
difference in the improved efficiency relative to a 0%
difference between the two prescriptions is marked with
an asterisk in Figure 8, and the accompanying statistics
are found in Table 3. DSL m[i/o] was more efficient for
low-, medium-, and high-level speech and when averaged
across all three input levels.

Figure 9 is a plot of the high-frequency audibility as a
function of the PTA from 2 to 6 kHz for DSL m[i/o] and
NAL-NL2 at medium and high speech input levels. The
frequency range of 2–6 kHz is used instead of 0.5, 1, and
2 kHz to demonstrate the correlation, or lack thereof,
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between hearing loss at the high frequencies and high-
frequency audibility with DSL m[i/o]. The data are reflect-
ive of one major goal of DSL m[i/o], which is to maximize
the high-frequency audibility, no matter the severity of
hearing loss, whereas NAL-NL2 will intentionally not
prescribe high-frequency audibility as hearing loss
increases because of the desensitized predictions that audi-
bility in these cases would not increase SII calculations.

Adult Selection

SII versus loudness. Plots of the performance for DSL
m[i/o] and NAL-NL2 prescriptions for SII versus loud-
ness are reported in Figure 10, top and bottom, respect-
ively. The left panels plot the ANSI SII values on the
ordinate axis, and the right panels plot the desensitized
or reduced SII values on the ordinate axis. The larger
marker points indicate where the average data for ampli-
fied low (circle), medium (X), and high (diamond) input
levels are located. DSL m[i/o] is shown to have greater
loudness than NAL-NL2, as the spread of data points
span further along the right of the abscissa.

Improved efficiency analysis demonstrated, with
regard to return of SII for the risk of loudness, that
NAL-NL2 has a significant advantage compared with
DSL m[i/o] (Figure 11). This finding was evident for
both the ANSI SII (black bars) and the desensitized
SII (white bars). A significant difference in the improved
efficiency relative to a 0% difference between the two
prescriptions is marked with an asterisk in Figure 11,
and the accompanying statistical analyses are found in
Table 4.

To demonstrate the impact of SII values on percent
correct scores for speech, transfer functions for the two
commonly used speech materials in clinical audiology,
that is, NU-6 (Studebaker et al., 1993) and CST
(Humes, 2002; Sherbecoe & Studebaker, 2002, 2003),
were used. The estimated percent correct score for each
audiogram (unaided, aided with DSL m[i/o], and aided
with NAL-NL2) is plotted as a function of the 0.5 -, 1 -,
2-kHz PTA (Figure 12). The NU-6 predictions are
shown in the top panels, and the CST predictions are
shown in the bottom panels. The left panels include the
predictions based on the ANSI SII values, and the right
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Note. The asterisk refers to a statistically significant difference between the two prescriptions in efficiency.

Table 3. t-Test Statistics on Whether the Improved Efficiency Calculation for Return of High-Frequency Audibility Was Better Than No

Difference (0%) for the Pediatric Population.

Statistical Difference in Efficiency Between DSL m[i/o] and NAL-NL2

Low Medium High Average across input levels

High-frequency audibility

versus loudness

t(26)¼ 4.914, p5.001 t(26)¼ 9.620, p5.001 t(26)¼ 19.192, p5.001 t(26)¼ 10.784, p5.001

Note. All the p values represent significant differences.
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panels include the predictions based on the desensitized
SII. Hence, the benefit from amplification for speech in
quiet can be visualized. In general, the plots indicate that
percent correct predictions are better for the DSL m[i/o]
prescription than the NAL-NL2 prescription when the
PTA exceeds approximately 60 dB HL. When the predic-
tions are desensitized (Figure 12, right) for increasing
hearing loss, however, the expected performance with
the two prescriptions is equivalent.

Figure 13 (with second-order polynomial regression
lines) is reflective of the fact that with increasing hearing
loss, even when aided with well-validated generic pre-
scriptions, individuals are expected to have decreased
performance abilities to recognize speech. Again, this
concept is often generalized to realistic expectations
counseling for hearing aids in clinical practice, but usu-
ally without any quantified reference. Realistic expect-
ations appear to not be affected by the prescription
used (i.e., see the similar slopes for both NAL-NL2
and DSL m[i/o] for the desensitized SII data).
Also, visually evident is the reduction in expected SII
values as a result of assumed desensitization compared
with no desensitization (ANSI S3.5 SII). Similarity of the

slopes for the pediatric data is also noted in Figure 6 and
the adult data in Figure 13, suggesting that the decre-
ment to realistic expectations with increasing hearing
loss would be similar with both populations. The overall
reduction in performance for the pediatric data com-
pared with the adult data here is the use of the age-
related proficiency factor of Scollie (2008) in pediatric
data calculations.

High-frequency audibility versus loudness. Plots of the
performance for DSL m[i/o] and NAL-NL2 prescrip-
tions for high-frequency audibility versus loudness
are reported in the top and bottom rows of Figure 14,
respectively. The larger marker points indicate
where the average data for amplified low (circle),
medium (X), and high (diamond) input levels are
located. DSL m[i/o] is shown to have more loudness
than NAL-NL2 as the spread of data points span farther
along the right of the abscissa. A significant difference in
the improved efficiency relative to a 0% difference
between the two prescriptions is marked with an asterisk
in Figure 15, and the accompanying statistics are found
in Table 5.
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Figure 9. The amount of high-frequency audibility as a function of PTA for children fit with either the DSL m[i/o] (top panels) or NAL-

NL2 (bottom panels) at medium-(left column) and high-(right column) input levels.
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The improved efficiency analysis demonstrated, with
regard to return of high-frequency audibility for the risk
of loudness, that DSL m[i/o] has a significant advantage
over NAL-NL2 at medium and high input levels
(Figure 15). However, for the low input level, NAL-
NL2 is more efficient. Interestingly, the efficiency

advantage for NAL-NL2, in this case at the low input
level, appears to stem from less, presumably an uninten-
tional, return of high-frequency audibility for DSL m[i/
o]. On average, DSL m[i/o] only prescribed high-fre-
quency audibility through 2,275Hz and for 4 of the 27
audiograms prescribed no RMS audibility at any
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frequency for adults at the soft input level. However,
NAL-NL2 has, on average, high-frequency audibility
through 3591Hz (i.e., the only time NAL-NL2 has
more high-frequency audibility than DSL m[i/o]).

Figure 16 is a plot of the high-frequency audibility as a
function of the PTA from 2 to 6 kHz. The frequency range
of 2 to 6 kHz is used instead of 0.5, 1, and 2 kHz to dem-
onstrate the correlation between hearing loss at the high
frequencies and high-frequency audibility. The data are
reflective of one major goal of DSL m[i/o], which is to
maximize the high-frequency audibility, no matter the
severity of hearing loss, whereasNAL-NL2will intention-
ally not prescribe high-frequency audibility as hearing loss
increases because of the desensitized predictions that

audibility in these cases would not be useful to speech
understanding. Also noted is the similarity of the slope
values between the pediatric data in Figure 9 and the
adult data in Figure 16, suggesting that the recommended
high-frequency audibility of both prescriptions is main-
tained for both patient populations.

Discussion

Pediatric Selection

These results clearly demonstrate the efficiency advan-
tage of NAL-NL2, compared with DSL m[i/o] for the
SII, and of DSL m[i/o], compared with NAL-NL2, for
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Figure 12. Scatterplot of percent correct scores with (right column) and without (left column) desensitization as a function of PTA for

adults fit with DSL m[i/o] (squares) or NAL-NL2 (circles) on both the NU-6 (top row) and CST (bottom row) speech material.

Table 4. t-Test Statistics on Whether the Improved Efficiency Calculation for Return of SII Was Better Than No Difference (0%) for the

Adult Population.

Statistical Difference in Efficiency Between DSL m[i/o] and NAL-NL2

Low Medium High

Average across

input levels

ANSI SII versus loudness t(26)¼ 3.013, p¼ .006 t(26)¼ 33.334, p5.001 t(26)¼ 16.505, p5.001 t(26)¼ 25.310, p5.001

Desensitized SII versus loudness t(26)¼ 5.199, p¼ .001 t(26)¼ 43.197, p5.001 t(26)¼ 44.561, p5.001 t(26)¼ 36.032, p5.001

Note. All the p values represent significant differences.
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the high-frequency audibility. The reduction in predicted
SII for both prescriptions with increasing hearing loss
was also apparent. With regard to increasing hearing
loss and high-frequency audibility, the DSL m[i/o] pre-
scription continued to prescribe audibility as hearing loss
increased, whereas NAL-NL2 provided less high-
frequency audibility with increased hearing loss because
of its use of the desensitization factor.

Adult Selection

The efficiency advantage of NAL-NL2 compared with
DSL m[i/o] for predicted SII is evident for the adult
population. In contrast, for high-frequency audibility,
DSL m[i/o] compared with NAL-NL2 reveals an effi-
ciency advantage for medium and high input level
speech input. Also, a reduction in predicted SII occurred
for both prescriptions with increased hearing loss.
With regard to increasing hearing loss and high-
frequency audibility, the DSL m[i/o] prescription contin-
ued to prescribe audibility as hearing loss increased,
whereas NAL-NL2 provided less high-frequency audibil-
ity with increased hearing loss, again because of its use of
the desensitization factor.

Is the Additional Audibility Prescribed by DSL m[i/o]
Useful to Speech Understanding?

Given the additional audibility prescribed by DSL m[i/o]
when compared with NAL-NL2, it is reasonable to think
that DSL m[i/o] might enable those with greater high-fre-
quency hearing impairment to have additional speech
intelligibility benefits. However, desensitization suggests
that, at least for the average individual of a given decibels
HL impairment, this expectation is not demonstrated in
speech recognition scores (Carhart, 1951; Ching et al.,
1998, 2011; Pavlovic et al., 1986; Studebaker et al., 1997).

At the same time, any use of a desensitization factor
(based on average data) would not necessarily apply to a
range of individuals, particularly those individuals with
less desensitization than average who presumably might
well benefit from a high-frequency extension. Thus,
although NAL-NL2 prescribes high-frequency audibility
that is expected to maximize SII for the average listener,
DSL m[i/o] prescribes a high-frequency audibility that
may be optimal for a range of listeners at the cost of
additional loudness, which, if unconstrained, could pre-
sumably pose a safety risk for noise-induced hearing loss
(Macrae, 1994, 1995, 1996).
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One matter requiring additional inquiry is whether the
average desensitization factor assumed by NAL-NL2 is
accurate or has been replicated. Ching et al. (2011)
reported that the amount of desensitization, which
varies as a function of threshold, did not differ and
depended on the speech material (e.g., BKB sentences,
CUNY words, or VCV syllables). In addition,
the authors report on the amount of desensitization
as a function of sensation level (dB) across a range of
low to high input levels. The function that best repre-
sented the amount of desensitization observed was as
follows:

Desensitized audibility (k0),

k0 ¼
k

30

� �p

þmp

� 	1=p

in which

m ¼
1

1þ e0:075ðT�66Þ
,

p ¼
T

8
� 15;

and T is the amount of frequency-specific hearing loss in
decibels HL.

In a separate study published nearly a decade earlier
by Sherbecoe and Studebaker (2003) and used in Humes
(2002), these investigators also reported a desensitization
factor which was based on PTA at a single input level of
65 dB SPL (i.e., their factor did not vary as a function of
sensation level). The Sherbecoe and Studebaker (2003)
factor was based on the performance of an entirely
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different set of listeners and with different speech mater-
ial (i.e., the CST of Cox, Alexander, & Gilmore, 1987).
Most pertinent, though, is that the data indicate that for
the 27 audiograms used in this study on MPT, both the
Sherbecoe and Studebaker (2003) and the Ching et al.
(2011) desensitization factors yield near-identical reduc-
tions to the ANSI SII calculated values (within 1/100
hundredth units; Table 6). Specifically, the reduction
was 0.12 using the Ching et al. (2011) desensitization
factor (used within NAL-NL2) and was 0.11 using the
Sherbecoe and Studebaker (2003) desensitization factor.
The agreement between the two datasets that lead to the
derivation of these two factors is substantial evidence
that at least, on average, the amount of desensitization
can be accurately estimated based on measures of an
audiogram.

Decrement to Expected Speech Intelligibility With
and Without Desensitization

Figures 5 and 6, as well as Figures 12 and 13, indicate the
realistic expectations regarding speech intelligibility
across a range of individuals with increasing PTA
when fit to prescriptive recommendations (using hearing
aids providing no SNR improvement—an omnidirec-
tional microphone). If desensitization did not occur
(direct ANSI SII) with increasing hearing loss, then the
expected percent correct scores for individuals with
severe hearing loss will be better than 50% (with an
advantage to the DSL m[i/o] prescription, as shown in
the left panels of Figures 5 and 12). However, because
desensitization does have an impact, at least to some
extent, with increasing hearing loss, percent correct
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Figure 15. The improved efficiency for adults fit with DSL m[i/o] when compared with NAL-NL2 in a return versus risk
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Note. The asterisk refers to a statistically significant difference between the two prescriptions in efficiency.

Table 5. t-Test Statistics on Whether the Improved Efficiency Calculation for Return of High-Frequency Audibility Was Better Than No

Difference (0%) for the Adult Population.

Statistical Difference in Efficiency Between DSL m[i/o] and NAL-NL2

Low Medium High Average across input levels

High-frequency audibility

versus loudness

t(26)¼ 5.13, p5.001 t(26)¼ 24.566, p5.001 t(26)¼ 22.581, p5.001 t(26)¼ 0.463, p5.647

Note. All the p values represent significant differences.
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scores will be below 50% for the word level and sentence
speech material (right panels of Figures 5 and 12). As
such, in Figure 6 and 13, the desensitized SII estimates
reveal similar negative slopes (decrements to SII with

increasing hearing loss), regardless of the prescription.
The similar negative slopes imply that the reduction in
expected speech intelligibility with increasing hearing
loss is not impacted by the selection of prescription.
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Figure 16. The amount of high-frequency audibility as a function of PTA for adults fit with either the DSL m[i/o] (top panels) or NAL-

NL2 (bottom panels) at medium (left column) and high (right column) input levels.

Table 6. Similarity in Reduction to the Estimated SII Value Between Two Desensitization Factors Each of Which Were Based on

Magnitude of Pure Tone Hearing Loss and Derived From Different Study Populations and Speech Materials.

Studied with adults only

Amount of reduction to ANSI SII (on average)

SII for low SII for medium SII for high

Desensitization varying as

a function of sensation

level

NAL-NL2 desensitization factor (ori-

ginally described in Ching et al., 2011

for BKB sentences, CUNY words,

and VCV syllables and reported in

Johnson & Dillon, 2011)

0.02 0.12 0.13

Only investigated for a

65-dB input level

Applying the hearing loss desensitiza-

tion factor in Humes (2002) based

on CST speech material audibility-

index predictions (Sherbecoe &

Studebaker, 2003)

0.11

Note. BKB = Bamford-Kowal-Bench; CUNY = City University of New York; VCV = Vowel-Consonant-Vowel.
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More importantly, the negative slopes convey the often
vague notion that those with sensorineural hearing
impairment should have realistic expectations regarding
how well they will hear with hearing aids, particularly as
hearing loss decreases.

Using the second-order polynomial regression equa-
tions in Figures 6 and 13, a clinician can very simply
approximate the predicted SII for any given PTA and
then use a transfer function to predict average realistic
expectations of percent correct scores for speech recog-
nition in quiet for hearing aids fit to either an NAL-
NL2 or a DSL m[i/o] prescription. The equations can
be thought of as similar to an approximation of the
more complex calculation of a complete SII procedure
involving some 8 steps and 15 variables in each of 18
one-third octave bands (i.e., some 2,160 separate calcu-
lations) according to ANSI S3.5-1997 (R2007) descrip-
tion. In essence, the SII approximation operates in a
similar principle to the Born–Oppenheimer approxima-
tion commonly known in Physics (i.e., two less compli-
cated consecutive steps to simplify Schrödinger’s partial
differential eigenvalue equation of 162 variables for
computation of the energy and wave function of an
average-sized molecule). The approximated SII is, for
most practical clinical purposes, similar to the SII had
the much more precise version of 2,160 calculations
been used.

To further demonstrate the accuracy of the approxi-
mation to data and calculations beyond the study
sample, the following information is presented. Stiles,
Bentler, and McGregor (2012) reported that children fit
with hearing aids having an aided auditory-only ANSI
SII value of 0.65 or higher had better receptive vocabu-
lary outcomes than children with less audibility or
lower SII. McCreery (2013) reported on the Pediatric
Audiological Monitoring Protocol normative range for
the DSL m[i/o] prescription and indicated that children
with up to an 80-dB PTA had an SII of 0.65 when the
targets are achieved. In the accompanying software
application to this article, for DSL m[i/o], an 80-dB
PTA, and assuming the ANSI S3.5-1997 (R2007) full
contributions of audibility to speech intelligibility (e.g.,
Stiles et al., 2012), the SII approximation yields the
exact same 0.65 SII value. It should be noted, however,
that when the principles of desensitization are applied
to the SII calculation, the effective SII may in actuality
be only about 0.35. This means that audibility and
effective audibility are not one and the same and
should not to be regarded as interchangeable terms
when speaking of contributions to intelligibility. In
turn, the realistic expectation of speech recognition per-
cent correct performance for an SII of 0.65 and 0.35 are
also not the same.

With regard to the PTA (at 0.5, 1, and 2 kHz)
approximation of SII, it must be acknowledged that

the configuration of the 27 losses used was of a typical
sloping nature (i.e., worse sensitivity in the high fre-
quencies than in the low frequencies). The approxima-
tions presented may not apply with the same accuracy
to rising hearing loss configurations where hearing sen-
sitivity is poor through 2 kHz and then within normal
limits above 2 kHz. To address this issue, as well as to
improve on SII approximations with various hearing
loss configurations, high-frequency PTA (at 3, 4, and
6 kHz) was included in further equation development.
Squaring the reported R values and averaging across
all equations presented, the equations recover 94.6% of
the variability in SII due to hearing loss, age, prescrip-
tion, and speech recognition model. The improved
equations relating hearing loss thresholds to SII were
as follows:

Unaided

Adult, ANSI SII

� 0:012 0:5, 1, 2 PTAð Þ

þ �0:006 3, 4, 6 PTAð Þ þ 1:347, R ¼ :966

Adult, Desensitized SII

� 0:012 0:5, 1, 2 PTAð Þ

þ �0:006 3, 4, 6 PTAð Þ þ 1:311, R ¼ :969

Ped-3 years, ANSI SII

� 0:006 0:5, 1, 2 PTAð Þ

þ �0:003 3, 4, 6 PTAð Þ þ :730, R ¼ :972

Ped-3 years, Desensitized SII

� 0:006 0:5, 1, 2 PTAð Þ

þ �0:003 3, 4, 6 PTAð Þ þ :705, R ¼ :969

Aided
Adult, NAL-NL2, ANSI SII

� 0:007 0:5, 1, 2 PTAð Þ

þ �0:004 3, 4, 6 PTAð Þ þ 1:299, R ¼ :975

Adult, NAL-NL2, Desensitized SII

� 0:008 0:5, 1, 2 PTAð Þ

þ �0:005 3, 4, 6 PTAð Þ þ 1:294, R ¼ :988

Johnson 163



Adult, DSL m[i/o], ANSI SII

� 0:005 0:5, 1, 2 PTAð Þ

þ �0:003 3, 4, 6 PTAð Þ þ 1:237, R ¼ :973

Adult, DSL m[i/o], Desensitized SII

� 0:008 0:5, 1, 2 PTAð Þ

þ �0:005 3, 4, 6 PTAð Þ þ 1:310, R ¼ :988

Ped-3 years, NAL-NL2, ANSI SII

� 0:003 0:5, 1, 2 PTAð Þ

þ �0:002 3, 4, 6 PTAð Þ þ :693, R ¼ :943

Ped-3 years, NAL-NL2, Desensitized SII

� 0:0046 0:5, 1, 2 PTAð Þ

þ �0:0025 3, 4, 6 PTAð Þ þ :711, R ¼ :985

Ped-3 years, DSL m[i/o], ANSI SII

� 0:002 0:5, 1, 2 PTAð Þ

þ �0:001 3, 4, 6 PTAð Þ þ :600, R ¼ :961

Ped-3 years, DSL m[i/o], Desensitized SII

� 0:0045 0:5, 1, 2 PTAð Þ

þ �0:0024 3, 4, 6 PTAð Þ þ :688, R ¼ :985:

Clinical Access to Realistic Expectation Estimates

Speech recognition in quiet. To facilitate the use of these
equations and realistic expectation calculations for
speech understanding estimates in quiet, a software pro-
gram has been created with a graphical user interface (see
article accompanied.exe file). Floor and ceiling limits
have been placed on the calculations to keep SII predic-
tions in the range of 0 to 1.0 and percent correct scores in
the range of 0% to 100%. Also, aided calculations are set
to always equal or exceed unaided calculations at
extreme limits of the equation predictions. SII and per-
cent correct scores are generated from the entry of 0.5 -,
1 -, and 2-kHz PTA thresholds and the 3 -, 4 -, and 6-kHz
PTA thresholds for different ages, prescriptions, and
speech intelligibility models with the simple click of
radio buttons. If desired, the age proficiency factor of

Scollie (2008), across age range of 3 to 100, may be
used to modify the SII approximation. Because clinicians
and researchers may also be interested in making predic-
tions regarding the presence of visual cues to the listener,
auditory–visual (AV) SII predictions are also made avail-
able per the ANSI S3.5-1997 (R2007) equations.

SAV ¼ bþ c� SAO,

where b and c are constants

for SAO R 0:2, b ¼ 0:1, and c ¼ 1:5,

for SAO 4 0:2, b ¼ 0:25, and c ¼ 0:75:

The SAV values are then transformed to percent cor-
rect scores using the aforementioned NU-6 and CST
transfer functions.

As an example, for a 0.5 -, 1 -, and 2-kHz PTA of
50 dB HL and 3 -, 4 -, and 6-kHz PTA of 90 dB HL
based on desensitized SII values and appropriate transfer
functions, unaided percent correct scores for an adult
listening to NU-6 and CST speech materials without
visual cues (i.e., auditory only) is 20.4% and 3.3%,
respectively, for an SII of 0.17. The NAL-NL2 aided
percent correct scores are 75.3% and 86.6% correct for
the NU-6 and CST, respectively, for a desensitized SII of
0.44. The DSL m[i/o] aided percent correct scores are
also 77.8% and 89.2% correct for the NU-6 and CST,
respectively, for a desensitized SII of 0.46. Caution is
warranted to prevent interpreting the approximations
as the ability of one prescription to outperform the
other prescription, particularly, when small SII differ-
ences of less than 0.05 are present.

The intent of the calculations is to afford both the
hearing health-care professional and the patient a realis-
tic expectation of aided performance and benefit from
hearing aids and not an absolute prediction. Moreover,
the predictions do not consider intrinsic factors of the
patient, but instead the extrinsic variables of hearing
loss, amplification, and our current understanding of
modeling speech recognition. These approximations are
acknowledged as based on the highly specified typical or
highly specified average individual; if the patient has
other characteristics (e.g., poor word recognition abilities
and cognitive decline), obtained performance and benefit
may be worse than expected. At the same time, some
individuals may be able to outperform these expect-
ations. Therefore, although the realistic expectations
are highly specified based on hearing loss severity and
configuration, age, prescription, and the speech recogni-
tion model, the expectations are, nonetheless, still
approximations.

Apparent from comparisons of the SII data via alter-
nating the traditional and revised speech recognition
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model in the software, the great equalizer of realistic
expectations with the two prescriptions is the HLD
factor in the revised SII model. In other words, under
the assumptions of the traditional ANSI SII model (i.e.,
any audibility is useful), DSL m[i/o] appears to offer
superior speech recognition compared with NAL-NL2.
But, with the revised SII model including desensitization,
the two prescriptions are essentially equivalent for
speech recognition. Rather than focusing just on mod-
eled speech recognition, the return of speech recognition
and high-frequency audibility for the risk of loudness to
create a measure of efficiency (as presented in the article)
is suggested as the more viable means for differentiating
the utility of each prescription.

Speech recognition in noise. From both the unaided and
aided NU-6 percent score, SNR loss estimates were
derived with a transfer function based on collected
data published in Figure 8 of Wilson (2011). As a
slight improvement to the transfer function published
as a second-order polynomial with an R2 value of .61,
which used only the higher NU-6 score in quiet of two
presentation levels to predict the 50% correct Words-in-
Noise (WIN) test SNR, the low-frequency (0.5, 1, and
2 kHz) and the high-frequency (3, 4, and 6 kHz) PTA
were added as additional predictor variables. All three
variables were identified as significant nonredundant pre-
dictors of the WIN thresholds, with an overall R value of
.80 accounting for 64% of the variance (i.e., R2

¼ .64).
The 50% correct WIN threshold was given by the fol-
lowing approximation equation:

50% correct WIN test SNR

¼ 17:685þ 0:068 3, 4, and 6 kHz PTAð Þ

þ 0:075 0:5, 1, and 2 kHz PTAð Þ

� 0:122 NU-6 percent scoreð Þ:

When hearing thresholds of 0 dB HL were entered into
the developed software, a 98.9% correct score on the
NU-6 was approximated from the calculated SII for a
realistic expectation of speech recognition in quiet.
Following which, 0 dB HL thresholds and a 98.9% cor-
rect score on the NU-6 approximated a 50% correct
WIN test SNR of 5.6 dB for the realistic expectation of
speech recognition in noise. Next, in order for the soft-
ware to report the 50% correct SNR as a loss relative to
the listener with normal hearing sensitivity, 5.6 dB was
subtracted from the 50% correct WIN test SNR.
As a result, the listener with normal hearing sensitivity
can be said to have no loss of SNR (i.e., an SNR loss
threshold of 0 dB). Subsequently, in the software, SNR
loss values greater than 0 dB indicate performance worse
than the listener with normal hearing sensitivity and

SNR loss values less than 0 dB indicate performance
better than the listener with normal hearing sensitivity.

The expected change to SNR loss based on additional
hearing aid technology components is approximated
based on previous works (Hawkins, 1984; Pittman,
Lewis, Hoover, & Stelmachowicz, 1999; Ricketts,
2000). Specifically, from Figure 7 of Ricketts (2000), a
first-order directional microphone provided a 4-dB SNR
advantage compared with an omnidirectional micro-
phone, on average, in a hearing aid with no venting.
Increasing vent size from 1mm to 2mm to an open ear
canal lead to smaller SNR advantages of 3.6, 3.2, and
2.4 dB, respectively. Or, stated differently, the increasing
vent sizes lead to a reduction in the SNR advantage by
10%, 20%, and 40%, respectively.

Bilateral first-order directional hearing aid micro-
phones, which share their SNR advantage wirelessly
with one another, result in about a 7-dB SNR advantage.
A classic FM system or wireless remote microphone
when combined with a directional (also known as envir-
onmental) hearing aid microphone results in about a
10-dB SNR advantage, whereas a classic FM system or
wireless remote microphone in isolation, without the
degradation of an environmental hearing aid micro-
phone, provides the most SNR advantage of about
15 dB. The software allows for any combination of
these hearing aid technology components and venting
to provide a realistic expectation of speech recognition
in noise.

Concluding Remarks

Results from this study suggests, on average, that the
additional audibility provided by DSL m[i/o] would
not significantly increase speech understanding, because
the amount of desensitization assumed by NAL-NL2 is
providing accurate predictions concerning the use of
high-frequency audibility. Presumably, there may be
select individuals with sensorineural loss that may have
significantly less desensitization than average (based on
hearing loss in decibels HL). These individuals may gain
additional speech intelligibility benefits from an exten-
sion of audibility to the high frequencies beyond what
would be prescribed by NAL-NL2.

In 2003, based on large U.S. National Institutes of
Health and Veteran Affairs funded studies, Humes
reported that audibility reduces the largest portion of
the variability in hearing aid outcome components,
explaining almost half the total variance (i.e., of the
65% on speech recognition performance outcome com-
ponent that could be accounted for approximately two
thirds of that [45%] was from audibility). Audibility
versus effective audibility was not parsed out as part of
the study. Only subjective sound quality could explain
7% of the subjective benefit/satisfaction outcome
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component and hearing aid experience could explain
15% of hearing aid usage outcome component.

In general, DSL m[i/o] seeks to maximize audibility,
while considering loudness comfort. NAL-NL2 seeks to
maximize speech intelligibility with the most amount of
effective audibility to control/limit loudness. As such,
both prescriptions address audibility but in different
ways. In general, DSL m[i/o] just provides more audibil-
ity than NAL-NL2. One potential limitation with the use
of desensitization by NAL-NL2 is that some patients,
with less desensitization than average for their pure
tone hearing loss, may not receive audibility at frequen-
cies with the most hearing loss, which perhaps could be
used effectively. Such realities are a result of designing
prescriptions for all patients with the risk of excessive
loudness (i.e., DSL m[i/o]) or for average patients with
constrained loudness (i.e., NAL-NL2).

Hearing health-care professionals in clinical practice
need a better way to decide which patients should receive
which prescription. The prescription received could be
one analyzed within this study, or, perhaps, even other
properly verified prescriptions not examined in the cur-
rent study (e.g., other generic prescriptions or manufac-
turer-derived prescriptions). The wording of properly
verified is used because Abrams et al. (2012) demon-
strated that experienced hearing aid wearers using a ver-
ified generic prescription (i.e., NAL-NL1) have better
self-perceived benefit as measured by the APHAB than
when a manufacturer’s initial-fit software programming
only approach was used.

There are likely many suitable prescriptions for any
individual listener. Johnson (2012) used a calculation,
known as Drake’s equation, to estimate the number of
suitable hearing aid gain frequency responses (prescrip-
tions), via examination of the product of a restrictive
series of fractional values from a number of estimated
possibilities. These calculations indicated that there may
be least 1,430 optimal gain–frequency responses (pre-
scription alternatives) for any individual listener. In 16-
channel hearing aids capable of 70 dB gain, 417 octillion
frequency responses are possible and the odds of finding
any one of these optimal responses, even with good gues-
sing based on clinical experience is less than 1 in 291
septillion (Johnson, 2012). Therefore, prescription of a
single frequency response is very selective and helps hear-
ing health-care professionals identify an appropriate, evi-
dence-based frequency response selection. The notion of
a singular frequency response recommended by a given
prescription, however, may be excessively presumptive.
Certainly, we know that patients express a wide range of
preference for not only frequency response but also over-
all gain (volume). Hence, when prescriptions are used,
instead of the common clinical approach which is that
one prescription is somehow regarded as superior to
other prescriptions and, in many cases, applied to age-

specific populations (e.g., DSL m[i/o] for pediatric
patients and NAL-NL2 for adult patients), clinical deci-
sions on the use of a particular prescription or prescrip-
tions could be based on the following two proposals
which compare allow for comparison of prescription
alternatives.

The first, and perhaps better of the two proposals,
relies on the practicality and face validity of the com-
parative approach method (Carhart, 1946) for the fit-
ting of hearing aids using paired comparisons of sound
quality (Kuk, 1994; Kuk & Lau, 1995; Thurstone,
1927a, 1927b). In this proposal, alternative prescrip-
tions would be presented to patients in a paired com-
parison approach, to determine whether a sound
quality preference for one prescription over another is
present.

The paired comparison process has generally been
regarded as too lengthy for clinical feasibility.
Simplification of the paired comparison process using
binomial probability statistics (Kuk & Lau, 1995), how-
ever, is sufficient and timely (less than 5min) to ensure
that a patient is fit with a repeated preference between
two assumed equivalent alternatives (i.e., Sound
Impression Measurement Procedure of a Listening
Experience; Brown & Johnson, 2013; Light & Johnson,
2013). With 10 comparisons, eight repeated choices are a
significant preference at p5.05. At least 10 comparisons
are recommended for good sensitivity and specificity to
gold-standard paired comparison methodology (i.e.,
strength of preference ratings with nonparametric
Wilcoxon signed-rank test; Brown & Johnson, 2013;
Light & Johnson, 2013). Such a recommendation for
numerous comparisons is consistent with the long ago
recommendations of Zerlin (1962) and Punch and
Parker (1981).

The second proposal is a direct assessment approach
to determining whether additional high-frequency audi-
bility actually results in better speech recognition. In
essence, a clinician could create a high-pass filter at the
last point of high-frequency audibility (i.e., the frequency
where peak sensation levels are negative) with an NAL-
NL2 prescription and evaluate the percent correct per-
formance of a patient within the high-pass filter. Using a
25-word list, if performance is greater than 8%, because
performance should be 0% given correctly assumed
desensitization by NAL-NL2 for the magnitude of hear-
ing loss, then a clinician could conclude that the patient
benefits from the additional high-frequency audibility
(i.e., a prescription like DSL m[i/o]). This is how the
Thorton and Raffin (1978) article was intended for
use—to compare speech recognition difference scores
for statistical significance.

In a review of the comparative approach (Carhart,
1946), an 8% difference in compared alternatives was
advocated as the difference when one alternative could
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be determined as better than another alternative. Now
the comparative approach definition of an 8% difference
as being significant can be merged with the binomial
variable model of speech discrimination scores by
Thorton and Raffin (1978). That is, a difference of 8%
or more when the difference should have been 0% (i.e.,
no improvement to speech recognition with more audi-
bility than NAL-NL2) allows for the comparative
approach and the Thorton and Raffin article to be
used in concert with one another. Their merging creates
a defensible position for comparing prescriptive alterna-
tives based on speech recognition scores again. This mer-
ging is unexpected because the Thorton and Raffin
article is often known as leading to the demise of the
comparative approach (e.g., see Sammeth & Levitt,
2000, for a review). Instead, the Thorton and Raffin art-
icle has just supported the potential return of the com-
parative approach, and its original, intended focus on
speech recognition, to prominence as well.

As was demonstrated by Thorton and Raffin (1978),
the use of more than 25 words (i.e., a full 50-word list)
may be beneficial to detect smaller statistically significant
differences. The high-frequency emphasis lists on the
Quick Speech-In-Noise test were designed with the
same idea in mind (i.e., to determine the usability of
audible high-frequency amplification; Killon, Niquette,
Gudmundsen, Revitt, & Banerjee, 2004), but experi-
ments have never high-pass filtered the test material
with specific consideration of the NAL-NL2 recommen-
dation for individuals with hearing impairment.

Summary

This investigation has demonstrated the theory and
expected returns (i.e., SII and high-frequency audibility)
of two common generic prescriptions versus expected
risk (loudness). The return versus risk trade-off was sub-
sequently reported as a measure of efficiency compared
with the efficient frontier of a modeled individual with
normal hearing. The efficient frontier of the normal hear-
ing is expected to have further applications beyond just
prescriptions as engineering and technology improve-
ments to the SNR provides a possibility that individuals
with mild-to-moderate sensorineural hearing impairment
(i.e., have small amounts of desensitization) may be able
to outperform normal hearing listeners in adverse
speech-in-noise listening environments. As such, MPT
can indicate by how much these aided listeners are sur-
passing the efficient frontier of listeners with normal
hearing sensitivity.
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