55 research outputs found

    Earthworm populations in a wheat-soybean double-crop system under seven years of established residue management practices

    Get PDF
    Earthworms improve soil structure, distribute litter and microbes, stimulate microbial activity, facilitate decomposition, and increase nitrogen (N) availability for plant growth. Earthworm density is often reduced in low organic matter soils that are intensively managed to grow row crops. This study was designed to relate earthworm density and community composition to residue management after seven years of established management practices in a wheat (Triticum aestivum L.)-soybean (Glycine max (L.) Merr.) double-crop system maintained in Marianna, Ark. Residue management practices included conventional tillage (CT) and no-tillage (NT), N fertilization to produce high and low wheat residue amounts left in the field, and burning and non-burning of residue after wheat harvest. Total earthworm densities ranged from 271 to 508 m-2 across treatments. Both exotic Aporrectodea trapezoides (Duges) and native Diplocardia sylvicola (Gates) adult earthworms were present with very little difference in diversity among sampled communities; however, more than 50 % of adults were D. sylvicola in all treatments. Residue level and burning influenced total, juvenile, and native earthworm densities differently in CT and NT. Adult native earthworms predominated over a common exotic species in a wheat-soybean double-crop system in Arkansas with residue management practices interacting to impact the density of earthworms

    Cell Cycle Phase Regulates Glucocorticoid Receptor Function

    Get PDF
    The glucocorticoid receptor (GR) is a member of the nuclear hormone receptor superfamily of ligand-activated transcription factors. In contrast to many other nuclear receptors, GR is thought to be exclusively cytoplasmic in quiescent cells, and only translocate to the nucleus on ligand binding. We now demonstrate significant nuclear GR in the absence of ligand, which requires nuclear localisation signal 1 (NLS1). Live cell imaging reveals dramatic GR import into the nucleus through interphase and rapid exclusion of the GR from the nucleus at the onset of mitosis, which persists into early G1. This suggests that the heterogeneity in GR distribution is reflective of cell cycle phase

    Ultradian Cortisol Pulsatility Encodes a Distinct, Biologically Important Signal

    Get PDF
    Cortisol is released in ultradian pulses. The biological relevance of the resulting fluctuating cortisol concentration has not been explored.Determination of the biological consequences of ultradian cortisol pulsatility.A novel flow through cell culture system was developed to deliver ultradian pulsed or continuous cortisol to cells. The effects of cortisol dynamics on cell proliferation and survival, and on gene expression were determined. In addition, effects on glucocorticoid receptor (GR) expression levels and phosphorylation, as a potential mediator, were measured.Pulsatile cortisol caused a significant reduction in cell survival compared to continuous exposure of the same cumulative dose, due to increased apoptosis. Comprehensive analysis of the transcriptome response by microarray identified genes with a differential response to pulsatile versus continuous glucocorticoid delivery. These were confirmed with qRT-PCR. Several transcription factor binding sites were enriched in these differentially regulated target genes, including CCAAT-displacement protein (CDP). A CDP regulated reporter gene (MMTV-luc) was, as predicted, also differentially regulated by pulsatile compared to continuous cortisol delivery. Importantly there was no effect of cortisol delivery kinetics on either GR expression, or activation (GR phosphoSer(211)).Cortisol oscillations exert important effects on target cell gene expression, and phenotype. This is not due to differences in cumulative cortisol exposure, or either expression, or activation of the GR. This suggests a novel means to regulate GR function

    Production of dust by massive stars at high redshift

    Full text link
    The large amounts of dust detected in sub-millimeter galaxies and quasars at high redshift pose a challenge to galaxy formation models and theories of cosmic dust formation. At z > 6 only stars of relatively high mass (> 3 Msun) are sufficiently short-lived to be potential stellar sources of dust. This review is devoted to identifying and quantifying the most important stellar channels of rapid dust formation. We ascertain the dust production efficiency of stars in the mass range 3-40 Msun using both observed and theoretical dust yields of evolved massive stars and supernovae (SNe) and provide analytical expressions for the dust production efficiencies in various scenarios. We also address the strong sensitivity of the total dust productivity to the initial mass function. From simple considerations, we find that, in the early Universe, high-mass (> 3 Msun) asymptotic giant branch stars can only be dominant dust producers if SNe generate <~ 3 x 10^-3 Msun of dust whereas SNe prevail if they are more efficient. We address the challenges in inferring dust masses and star-formation rates from observations of high-redshift galaxies. We conclude that significant SN dust production at high redshift is likely required to reproduce current dust mass estimates, possibly coupled with rapid dust grain growth in the interstellar medium.Comment: 72 pages, 9 figures, 5 tables; to be published in The Astronomy and Astrophysics Revie

    Effect of the relative shift between the electron density and temperature pedestal position on the pedestal stability in JET-ILW and comparison with JET-C

    Get PDF
    The electron temperature and density pedestals tend to vary in their relative radial positions, as observed in DIII-D (Beurskens et al 2011 Phys. Plasmas 18 056120) and ASDEX Upgrade (Dunne et al 2017 Plasma Phys. Control. Fusion 59 14017). This so-called relative shift has an impact on the pedestal magnetohydrodynamic (MHD) stability and hence on the pedestal height (Osborne et al 2015 Nucl. Fusion 55 063018). The present work studies the effect of the relative shift on pedestal stability of JET ITER-like wall (JET-ILW) baseline low triangularity (\u3b4) unseeded plasmas, and similar JET-C discharges. As shown in this paper, the increase of the pedestal relative shift is correlated with the reduction of the normalized pressure gradient, therefore playing a strong role in pedestal stability. Furthermore, JET-ILW tends to have a larger relative shift compared to JET carbon wall (JET-C), suggesting a possible role of the plasma facing materials in affecting the density profile location. Experimental results are then compared with stability analysis performed in terms of the peeling-ballooning model and with pedestal predictive model EUROPED (Saarelma et al 2017 Plasma Phys. Control. Fusion). Stability analysis is consistent with the experimental findings, showing an improvement of the pedestal stability, when the relative shift is reduced. This has been ascribed mainly to the increase of the edge bootstrap current, and to minor effects related to the increase of the pedestal pressure gradient and narrowing of the pedestal pressure width. Pedestal predictive model EUROPED shows a qualitative agreement with experiment, especially for low values of the relative shift

    The comet Halley dust and gas environment

    Full text link
    Quantitative descriptions of environments near the nucleus of comet P /Halley have been developed to support spacecraft and mission design for the flyby encounters in March, 1986. To summarize these models as they exist just before the encounters, we review the relevant data from prior Halley apparitions and from recent cometary research. Orbital elements, visual magnitudes, and parameter values and analysis for the nucleus, gas and dust are combined to predict Halley's position, production rates, gas and dust distributions, and electromagnetic radiation field for the current perihelion passage. The predicted numerical results have been useful for estimating likely spacecraft effects, such as impact damage and attitude perturbation. Sample applications are cited, including design of a dust shield for spacecraft structure, and threshold and dynamic range selection for flight experiments. We expect that the comet's activity may be more irregular than these smoothly varying models predict, and that comparison with the flyby data will be instructive.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43774/1/11214_2004_Article_BF00175326.pd

    Ozark Mountain Vineyard Sustainability Assessment Workbook: A Self-Assessment of Management Practices (2010)

    Get PDF
    This workbook is designed to increase vineyard sustainability and the adoption of environmentally-friendly vineyard management practices. Vineyard managers can use this resource to develop and implement self-assessment of vineyard practices to improve practices for managing vineyard canopies and crop load, pests and weeds.Viticulture Consortium, University of Arkansas Division of Agriculture, and Missouri Wine and Grape Boar

    Isopropanol attracts the green lacewing, Chrysopa quadripunctata (Neuroptera: Chrysopidae)

    No full text
    Adult female green lacewings, Chrysopa quadripunctata Burmeister, were attracted to traps baited with 45% isopropanol in an unsprayed apple orchard in Missouri, USA. No lacewings were attracted to the unbaited traps. To the best of our knowledge this is the first report on a semiochemical that attracts lacewings of this species
    corecore