10,727 research outputs found

    Repeat-Accumulate Codes for Reconciliation in Continuous Variable Quantum Key Distribution

    Full text link
    This paper investigates the design of low-complexity error correction codes for the verification step in continuous variable quantum key distribution (CVQKD) systems. We design new coding schemes based on quasi-cyclic repeat-accumulate codes which demonstrate good performances for CVQKD reconciliation

    Earthquake Arrival Association with Backprojection and Graph Theory

    Full text link
    The association of seismic wave arrivals with causative earthquakes becomes progressively more challenging as arrival detection methods become more sensitive, and particularly when earthquake rates are high. For instance, seismic waves arriving across a monitoring network from several sources may overlap in time, false arrivals may be detected, and some arrivals may be of unknown phase (e.g., P- or S-waves). We propose an automated method to associate arrivals with earthquake sources and obtain source locations applicable to such situations. To do so we use a pattern detection metric based on the principle of backprojection to reveal candidate sources, followed by graph-theory-based clustering and an integer linear optimization routine to associate arrivals with the minimum number of sources necessary to explain the data. This method solves for all sources and phase assignments simultaneously, rather than in a sequential greedy procedure as is common in other association routines. We demonstrate our method on both synthetic and real data from the Integrated Plate Boundary Observatory Chile (IPOC) seismic network of northern Chile. For the synthetic tests we report results for cases with varying complexity, including rates of 500 earthquakes/day and 500 false arrivals/station/day, for which we measure true positive detection accuracy of > 95%. For the real data we develop a new catalog between January 1, 2010 - December 31, 2017 containing 817,548 earthquakes, with detection rates on average 279 earthquakes/day, and a magnitude-of-completion of ~M1.8. A subset of detections are identified as sources related to quarry and industrial site activity, and we also detect thousands of foreshocks and aftershocks of the April 1, 2014 Mw 8.2 Iquique earthquake. During the highest rates of aftershock activity, > 600 earthquakes/day are detected in the vicinity of the Iquique earthquake rupture zone

    Measuring the Direction and Angular Velocity of a Black Hole Accretion Disk via Lagged Interferometric Covariance

    Full text link
    We show that interferometry can be applied to study irregular, rapidly rotating structures, as are expected in the turbulent accretion flow near a black hole. Specifically, we analyze the lagged covariance between interferometric baselines of similar lengths but slightly different orientations. For a flow viewed close to face-on, we demonstrate that the peak in the lagged covariance indicates the direction and angular velocity of the emission pattern from the flow. Even for moderately inclined flows, the covariance robustly estimates the flow direction, although the estimated angular velocity can be significantly biased. Importantly, measuring the direction of the flow as clockwise or counterclockwise on the sky breaks a degeneracy in accretion disk inclinations when analyzing time-averaged images alone. We explore the potential efficacy of our technique using three-dimensional, general relativistic magnetohydrodynamic (GRMHD) simulations, and we highlight several baseline pairs for the Event Horizon Telescope (EHT) that are well-suited to this application. These results indicate that the EHT may be capable of estimating the direction and angular velocity of the emitting material near Sagittarius A*, and they suggest that a rotating flow may even be utilized to improve imaging capabilities.Comment: 8 Pages, 4 Figures, accepted for publication in Ap

    Kepler-18b,c, and d: A System of Three Planets Confirmed by Transit Timing Variations, Light Curve Validation, Warm-Spitzer Photometry, and Radial Velocity Measurements

    Get PDF
    We report the detection of three transiting planets around a Sun-like star, which we designate Kepler-18. The transit signals were detected in photometric data from the Kepler satellite, and were confirmed to arise from planets using a combination of large transit-timing variations (TTVs), radial velocity variations, Warm-Spitzer observations, and statistical analysis of false-positive probabilities. The Kepler-18 star has a mass of 0.97 M_☉, a radius of 1.1 R_☉, an effective temperature of 5345 K, and an iron abundance of [Fe/H] = +0.19. The planets have orbital periods of approximately 3.5, 7.6, and 14.9 days. The innermost planet "b" is a "super-Earth" with a mass of 6.9 ± 3.4 M_⊕, a radius of 2.00 ± 0.10 R_⊕, and a mean density of 4.9 ± 2.4 g cm^3. The two outer planets "c" and "d" are both low-density Neptune-mass planets. Kepler-18c has a mass of 17.3 ± 1.9 M_⊕, a radius of 5.49 ± 0.26 R_⊕, and a mean density of 0.59 ± 0.07 g cm^3, while Kepler-18d has a mass of 16.4 ± 1.4 M_⊕, a radius of 6.98 ± 0.33 R_⊕ and a mean density of 0.27 ± 0.03 g cm^3. Kepler-18c and Kepler-18d have orbital periods near a 2:1 mean-motion resonance, leading to large and readily detected TTVs

    Modelling the Fluid Mechanics of Cilia and Flagella in Reproduction and Development

    Full text link
    Cilia and flagella are actively bending slender organelles, performing functions such as motility, feeding and embryonic symmetry breaking. We review the mechanics of viscous-dominated microscale flow, including time-reversal symmetry, drag anisotropy of slender bodies, and wall effects. We focus on the fundamental force singularity, higher order multipoles, and the method of images, providing physical insight and forming a basis for computational approaches. Two biological problems are then considered in more detail: (1) left-right symmetry breaking flow in the node, a microscopic structure in developing vertebrate embryos, and (2) motility of microswimmers through non-Newtonian fluids. Our model of the embryonic node reveals how particle transport associated with morphogenesis is modulated by the gradual emergence of cilium posterior tilt. Our model of swimming makes use of force distributions within a body-conforming finite element framework, allowing the solution of nonlinear inertialess Carreau flow. We find that a three-sphere model swimmer and a model sperm are similarly affected by shear-thinning; in both cases swimming due to a prescribed beat is enhanced by shear-thinning, with optimal Deborah number around 0.8. The sperm exhibits an almost perfect linear relationship between velocity and the logarithm of the ratio of zero to infinite shear viscosity, with shear-thickening hindering cell progress.Comment: 20 pages, 24 figure

    Effect of spatial waveform on apparent spatial frequency

    Get PDF
    AbstractWe examined the effect of spatial waveform on the perceived spatial frequency of a grating target. The luminance profile of 0.5 c/° sinusoidal gratings was modified by either compressive or expansive power functions, and was presented alternately with a true sinusoidal grating. Subjects matched the apparent spatial frequency of the two gratings using a method of adjustment. Both compressive and expansive power functions lowered the perceived spatial frequency of the grating, irrespective of the stimulus contrast. Rectified sine wave gratings were also found to reduce apparent spatial frequency. The magnitude of the spatial frequency shifts with spatial waveform diminished with successive matches, which may represent a change in matching strategy employed by observers. Calculations and a further experiment suggest that judgements of spatial frequency may in part be determined by the separation between edges in a grating

    A bead on a hoop rotating about a horizontal axis: a 1-D ponderomotive trap

    Full text link
    We describe a simple mechanical system that operates as a ponderomotive particle trap, consisting of a circular hoop and a frictionless bead, with the hoop rotating about a horizontal axis lying in the plane of the hoop. The bead in the frame of the hoop is thus exposed to an effective sinusoidally-varying gravitational field. This field's component along the hoop is a zero at the top and bottom. In the same frame, the bead experiences a time-independent centrifugal force that is zero at the top and bottom as well. The system is analyzed in the ideal case of small displacements from the minimum, and the motion of the particle is shown to satisfy the Mathieu equation. In the particular case that the axis of rotation is tangential to the hoop, the system is an exact analog for the rf Paul ion trap. Various complicating factors such as anharmonic terms, friction and noise are considered. A working model of the proposed system has been constructed, using a ball-bearing rolling in a tube along the outside of a section of a bicycle rim. The apparatus demonstrates in detail the operation of an rf Paul trap by reproducing the dynamics of trapped atomic ions and illustrating the manner in which the electric potential varies with time.Comment: Second external review for AJP, 28 pages double spaced, 11 figure

    Putting pharmaceuticals into the wider context of challenges to fish populations in rivers

    Get PDF
    The natural range of fish species in our rivers is related to flow, elevation, temperature, local habitat and connectivity. For over 2000 years, humans have altered to varying degrees the river habitat. In the past 200 years, we added to the environmental disruption by discharging poorly treated sewage, nutrients and industrial waste into our rivers. For many rivers, the low point arrived during the period of 1950s–1970s, when rapid economic development overrode environmental concerns and dissolved oxygen concentrations dropped to zero. In these more enlightened times, gross river pollution is a thing of the past in the Developed World. However, persistent legacy chemical contaminants can be found in fish long after their discharge ceased. Changes in habitat quality and morphology caused and continue to cause the disappearance of fish species. The range of fish stressors has now increased as temperatures rise, and non-native fish introductions bring new diseases. The threat from pharmaceuticals to fish populations remains hypothetical, and no studies have yet linked change in fish populations to exposure
    • …
    corecore