slides

A bead on a hoop rotating about a horizontal axis: a 1-D ponderomotive trap

Abstract

We describe a simple mechanical system that operates as a ponderomotive particle trap, consisting of a circular hoop and a frictionless bead, with the hoop rotating about a horizontal axis lying in the plane of the hoop. The bead in the frame of the hoop is thus exposed to an effective sinusoidally-varying gravitational field. This field's component along the hoop is a zero at the top and bottom. In the same frame, the bead experiences a time-independent centrifugal force that is zero at the top and bottom as well. The system is analyzed in the ideal case of small displacements from the minimum, and the motion of the particle is shown to satisfy the Mathieu equation. In the particular case that the axis of rotation is tangential to the hoop, the system is an exact analog for the rf Paul ion trap. Various complicating factors such as anharmonic terms, friction and noise are considered. A working model of the proposed system has been constructed, using a ball-bearing rolling in a tube along the outside of a section of a bicycle rim. The apparatus demonstrates in detail the operation of an rf Paul trap by reproducing the dynamics of trapped atomic ions and illustrating the manner in which the electric potential varies with time.Comment: Second external review for AJP, 28 pages double spaced, 11 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/12/2019