8 research outputs found

    Pneumococcal LytR, a Protein from the LytR-CpsA-Psr Family, Is Essential for Normal Septum Formation in Streptococcus pneumoniae▿ †

    No full text
    Proliferation of the human-pathogenic bacterium Streptococcus pneumoniae is fundamentally linked to the bacterial proteins that function in cell division. Here, we show that LytR, a pneumococcal protein from the LytR-CpsA-Psr family, is essential to this process

    A Hydrophobic Patch in the Competence-Stimulating Peptide, a Pneumococcal Competence Pheromone, Is Essential for Specificity and Biological Activity

    No full text
    Induction of competence for natural genetic transformation in Streptococcus pneumoniae depends on pheromone-mediated cell-cell communication and a signaling pathway consisting of the competence-stimulating peptide (CSP), its membrane-embedded histidine kinase receptor ComD, and the cognate response regulator ComE. Extensive screening of pneumococcal isolates has revealed that two major CSP variants, CSP1 and CSP2, are found in members of this species. Even though the primary structures of CSP1 and CSP2 are about 50% identical, they are highly specific for their respective receptors, ComD1 and ComD2. In the present work, we have investigated the structural basis of this specificity by determining the three-dimensional structure of CSP1 from nuclear magnetic resonance data and comparing the agonist activity of a number of CSP1/CSP2 hybrid peptides toward the ComD1 and ComD2 receptors. Our results show that upon exposure to membrane-mimicking environments, the 17-amino-acid CSP1 pheromone adopts an amphiphilic α-helical configuration stretching from residue 6 to residue 12. Furthermore, the pattern of agonist activity displayed by the various hybrid peptides revealed that hydrophobic amino acids, some of which are situated on the nonpolar side of the α-helix, strongly contribute to CSP specificity. Together, these data indicate that the identified α-helix is an important structural feature of CSP1 which is essential for effective receptor recognition under natural conditions

    Choline-Binding Protein D (CbpD) in Streptococcus pneumoniae Is Essential for Competence-Induced Cell Lysis

    No full text
    Streptococcus pneumoniae is an important human pathogen that is able to take up naked DNA from the environment by a quorum-sensing-regulated process called natural genetic transformation. This property enables members of this bacterial species to efficiently acquire new properties that may increase their ability to survive and multiply in the human host. We have previously reported that induction of the competent state in a liquid culture of Streptococcus pneumoniae triggers lysis of a subfraction of the bacterial population resulting in release of DNA. We have also proposed that such competence-induced DNA release is an integral part of natural genetic transformation that has evolved to increase the efficiency of gene transfer between pneumococci. In the present work, we have further elucidated the mechanism behind competence-induced cell lysis by identifying a putative murein hydrolase, choline-binding protein D (CbpD), as a key component of this process. By using real-time PCR to estimate the amount of extracellular DNA in competent relative to noncompetent cultures, we were able to show that competence-induced cell lysis and DNA release are strongly attenuated in a cbpD mutant. Ectopic expression of CbpD in the presence or absence of other competence proteins revealed that CbpD is essentially unable to cause cell lysis on its own but depends on at least one additional protein expressed during competence

    Pneumococcal CbpD is a murein hydrolase that requires a dual cell envelope binding specificity to kill target cells during fratricide

    No full text
    13 pags, 5 figs, 1 tabPneumococci that are competent for natural genetic transformation express a number of proteins involved in binding, uptake, translocation and recombination of DNA. In addition, they attack and lyse non-competent sister cells present in the same environment. This phenomenon has been termed fratricide. The key effector of pneumococcal fratricide is CbpD, a secreted protein encompassing an N-terminal CHAP domain, two SH3b domains and a C-terminal choline-binding domain (CBD). CbpD is believed to degrade the cell wall of target cells, but experimental evidence supporting this hypothesis has been lacking. Here, we show that CbpD indeed has muralytic activity, and that this activity requires functional CBD and SH3b domains. To better understand the critical role played by the non-catalytic C-terminal region of CbpD, various translational fusions were constructed between the CBD and SH3b domains and green fluorescent protein (GFP). The results showed that the SH3b domains specifically recognize and bind peptidoglycan, while the CBD domain functions as a localization signal that directs CbpD to the septal region of the pneumococcal cell. Intriguingly, transmission electron microscopy analysis revealed that target cells attacked by CbpD ruptures at the septal region, in accordance with the binding specificity displayed by the CBD domain. © 2010 Blackwell Publishing Ltd.The authors would like to thank Hilde Kolstad at the IPM imaging laboratory for technical assistance with the TEM analysis. This work was supported by The Research Council of Norway

    The Pneumococcal Cell Envelope Stress-Sensing System LiaFSR Is Activated by Murein Hydrolases and Lipid II-Interacting Antibiotics ▿ §

    No full text
    In the Firmicutes, two-component regulatory systems of the LiaSR type sense and orchestrate the response to various agents that perturb cell envelope functions, in particular lipid II cycle inhibitors. In the current study, we found that the corresponding system in Streptococcus pneumoniae displays similar properties but, in addition, responds to cell envelope stress elicited by murein hydrolases. During competence for genetic transformation, pneumococci attack and lyse noncompetent siblings present in the same environment. This phenomenon, termed fratricide, increases the efficiency of horizontal gene transfer in vitro and is believed to stimulate gene exchange also under natural conditions. Lysis of noncompetent target cells is mediated by the putative murein hydrolase CbpD, the key effector of the fratricide mechanism, and the autolysins LytA and LytC. To avoid succumbing to their own lysins, competent attacker cells must possess a protective mechanism rendering them immune. The most important component of this mechanism is ComM, an integral membrane protein of unknown function that is expressed only in competent cells. Here, we show that a second layer of self-protection is provided by the pneumococcal LiaFSR system, which senses the damage inflicted to the cell wall by CbpD, LytA, and LytC. Two members of the LiaFSR regulon, spr0810 and PcpC (spr0351), were shown to contribute to the LiaFSR-coordinated protection against fratricide-induced self-lysis
    corecore