15,404 research outputs found
FOD impact testing of composite fan blades
The results of impact tests on large, fiber composite fan blades for aircraft turbofan engine applications are discussed. Solid composite blades of two different sizes and designs were tested. Both graphite/epoxy and boron/epoxy were evaluated. In addition, a spar-shell blade design was tested that had a boron/epoxy shell bonded to a titanium spar. All blades were tested one at a time in a rotating arm rig to simulate engine operating conditions. Impacting media included small gravel, two inch diameter ice balls, gelatin and RTV foam-simulated birds, as well as starlings and pigeons. The results showed little difference in performance between the graphite and boron/epoxy blades. The results also indicate that composite blades may be able to tolerate ice ball and small bird impacts but need improvement to tolerate birds in the small duck and larger category
A study of energy release in rocket propellants by a projectile impact method Annual report, 10 May 1967 - 9 May 1968
Experimental measurement of rates of energy release in solid propellants subjected to strong shock waves from projectile impac
Lightweight orthotic braces
Leg brace is constructed of fiber-reinforced polymer material. Composite material is stiffer, stronger, and lighter than most metals
Computational engine structural analysis
A significant research activity at the NASA Lewis Research Center is the computational simulation of complex multidisciplinary engine structural problems. This simulation is performed using computational engine structural analysis (CESA) which consists of integrated multidisciplinary computer codes in conjunction with computer post-processing for problem-specific application. A variety of the computational simulations of specific cases are described in some detail in this paper. These case studies include: (1) aeroelastic behavior of bladed rotors, (2) high velocity impact of fan blades, (3) blade-loss transient response, (4) rotor/stator/squeeze-film/bearing interaction, (5) blade-fragment/rotor-burst containment, and (6) structural behavior of advanced swept turboprops. These representative case studies are selected to demonstrate the breath of the problems analyzed and the role of the computer including post-processing and graphical display of voluminous output data
Structural analysis
Hot section components of aircraft gas turbine engines are subjected to severe thermal-structural loading conditions, especially during the start-up and take-off portions of the engine cycle. The most severe and damaging stresses and strains are those induced by the steep thermal gradients induced during the start-up transient. These transient stresses and strains are also the most difficult to predict, in part because the temperature gradients and distributions are not well known or predictable, and also because the cyclic elasto-viscoplastic behavior of the materials at these extremes of temperature and strain are not well known or predictable. One element of the structures program will develop improved time-varying thermal-mechanical load models for the entire engine mission cycle from start-up to shutdown. The thermal model refinements will be consistent with those required by the structural code including considerations of mesh-point density, strain concentrations, and thermal gradients. Models will be developed for the burner liner, turbine vane and turbine blade
Convective Dynamos and the Minimum X-ray Flux in Main Sequence Stars
The objective of this paper is to investigate whether a convective dynamo can
account quantitatively for the observed lower limit of X-ray surface flux in
solar-type main sequence stars. Our approach is to use 3D numerical simulations
of a turbulent dynamo driven by convection to characterize the dynamic
behavior, magnetic field strengths, and filling factors in a non-rotating
stratified medium, and to predict these magnetic properties at the surface of
cool stars. We use simple applications of stellar structure theory for the
convective envelopes of main-sequence stars to scale our simulations to the
outer layers of stars in the F0--M0 spectral range, which allows us to estimate
the unsigned magnetic flux on the surface of non-rotating reference stars. With
these estimates we use the recent results of \citet{Pevtsov03} to predict the
level of X-ray emission from such a turbulent dynamo, and find that our results
compare well with observed lower limits of surface X-ray flux. If we scale our
predicted X-ray fluxes to \ion{Mg}{2} fluxes we also find good agreement with
the observed lower limit of chromospheric emission in K dwarfs. This suggests
that dynamo action from a convecting, non-rotating plasma is a viable
alternative to acoustic heating models as an explanation for the basal emission
level seen in chromospheric, transition region, and coronal diagnostics from
late-type stars.Comment: ApJ, accepted, 30 pages with 7 figure
El Niño and the delayed action oscillator
We study the dynamics of the El Niño phenomenon using the mathematical model of delayedaction oscillator (DAO). Topics such as the influence of the annual cycle, global warming, stochastic influences due to weather conditions and even off-equatorial heat-sinks can all be discussed using only modest analytical and numerical resources. Thus the DAO allows for a pedagogical introduction to the science of El Niño and La Niña while at the same time avoiding the need for large-scale computing resources normally associated with much more sophisticated coupled atmosphere-ocean general circulation models. It is an approach which is ideally suited for student projects both at high school and undergraduate level
Cool Jupiters greatly outnumber their toasty siblings : Occurrence rates from the Anglo-Australian Planet Search
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©2019 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Our understanding of planetary systems different to our own has grown dramatically in the past 30 yr. However, our efforts to ascertain the degree to which the Solar system is abnormal or unique have been hindered by the observational biases inherent to the methods that have yielded the greatest exoplanet hauls. On the basis of such surveys, one might consider our planetary system highly unusual - but the reality is that we are only now beginning to uncover the true picture. In this work, we use the full 18-yr archive of data from the Anglo-Australian Planet Search to examine the abundance of 'cool Jupiters' - analogues to the Solar system's giant planets, Jupiter and Saturn. We find that such planets are intrinsically far more common through the cosmos than their siblings, the hot Jupiters.We find that the occurrence rate of such 'cool Jupiters' is 6.73 +2.09 -1.13 per cent, almost an order of magnitude higher than the occurrence of hot Jupiters (at 0.84 +0.70 -0.20 per cent). We also find that the occurrence rate of giant planets is essentially constant beyond orbital distances of ~1 au. Our results reinforce the importance of legacy radial velocity surveys for the understanding of the Solar system's place in the cosmos.Peer reviewe
Hot gas ingestion characteristics and flow visualization of a vectored thrust STOVL concept
A 9.2 percent scale short takeoff and vertical landing (STOVL) hot gas ingestion model was designed and built by McDonnell Douglas Corporation (MCAIR) and tested in the NASA Lewis Research Center 9- by 15-Foot Low Speed Wind Tunnel (LSWT). Hot gas ingestion, the entrainment of heated engine exhaust into the inlet flow field, is a key development issue for advanced short takeoff and vertical landing aircraft. The Phase 1 test program, conducted by NASA Lewis and McDonnell Douglas Corporation, evaluated the hot ingestion phenomena and control techniques and Phase 2 test program which was conducted by NASA Lewis are both reported. The Phase 2 program was conducted at exhaust nozzles temperatures up to 1460 R and utilized a sheet laser system for flow visualization of the model flow field in and out of ground effects. Hot gas ingestion levels were measured for the several forward nozzle splay configurations and with flow control/lift improvement devices which reduced the hot gas ingestion. The model support system had four degrees of freedom, heated high pressure air for nozzle flow, and a suction system exhaust for inlet flow. The headwind (freestream) velocity for Phase 1 was varied from 8 to 90 kn, with primary data taken in the 8 to 23 kn headwind velocity range. Phase 2 headwind velocity varied from 10 to 23 kn. Results of both Phase 1 and 2 are presented. A description of the model, facility, a new model support system, and a sheet laser illumination system are also provided. Results are presented over a range of main landing gear height (model height) above the ground plane at a 10 kn headwind velocity. The results contain the compressor face pressure and temperature distortions, total pressure recovery, compressor face temperature rise, and the environmental effects of the hot gas. The environmental effects include the ground plane temperature and pressure distributions, model airframe heating, and the location of the ground flow separation. Results from the sheet laser flow visualization test are also shown
- …