67 research outputs found

    Prenatal Cocaine Disrupts Serotonin Signaling-Dependent Behaviors: Implications for Sex Differences, Early Stress and Prenatal SSRI Exposure

    Get PDF
    Prenatal cocaine (PC) exposure negatively impacts the developing nervous system, including numerous changes in serotonergic signaling. Cocaine, a competitive antagonist of the serotonin transporter, similar to selective serotonin reuptake inhibitors (SSRIs), also blocks dopamine and norepinephrine transporters, leaving the direct mechanism through which cocaine disrupts the developing serotonin system unclear. In order to understand the role of the serotonin transporter in cocaine’s effect on the serotonergic system, we compare reports concerning PC and prenatal antidepressant exposure and conclude that PC exposure affects many facets of serotonergic signaling (serotonin levels, receptors, transporters) and that these effects differ significantly from what is observed following prenatal SSRI exposure. Alterations in serotonergic signaling are dependent on timing of exposure, test regimens, and sex. Following PC exposure, behavioral disturbances are observed in attention, emotional behavior and stress response, aggression, social behavior, communication, and like changes in serotonergic signaling, these effects depend on sex, age and developmental exposure. Vulnerability to the effects of PC exposure can be mediated by several factors, including allelic variance in serotonergic signaling genes, being male (although fewer studies have investigated female offspring), and experiencing the adverse early environments that are commonly coincident with maternal drug use. Early environmental stress results in disruptions in serotonergic signaling analogous to those observed with PC exposure and these may interact to produce greater behavioral effects observed in children of drug-abusing mothers. We conclude that based on past evidence, future studies should put a greater emphasis on including females and monitoring environmental factors when studying the impact of PC exposure

    Combined Norepinephrine/Serotonergic Reuptake Inhibition: Effects on Maternal Behavior, Aggression, and Oxytocin in the Rat

    Get PDF
    Background: Few systematic studies exist on the effects of chronic reuptake of monoamine neurotransmitter systems during pregnancy on the regulation of maternal behavior (MB), although many drugs act primarily through one or more of these systems. Previous studies examining fluoxetine and amfonelic acid treatment during gestation on subsequent MB in rodents indicated significant alterations in postpartum maternal care, aggression, and oxytocin levels. In this study, we extended our studies to include chronic gestational treatment with desipramine or amitriptyline to examine differential effects of reuptake inhibition of norepinephrine and combined noradrenergic and serotonergic systems on MB, aggression, and oxytocin system changes. Methods: Pregnant Sprague-Dawley rats were treated throughout gestation with saline or one of three doses of either desipramine, which has a high affinity for the norepinephrine monoamine transporter, or amitriptyline, an agent with high affinity for both the norepinephrine and serotonin monoamine transporters. MB and postpartum aggression were assessed on postpartum days 1 and 6 respectively. Oxytocin levels were measured in relevant brain regions on postpartum day 7. Predictions were that amitriptyline would decrease MB and increase aggression relative to desipramine, particularly at higher doses. Amygdaloidal oxytocin was expected to decrease with increased aggression. Results: Amitriptyline and desipramine differentially reduced MB, and at higher doses reduced aggressive behavior. Hippocampal oxytocin levels were lower after treatment with either drug but were not correlated with specific behavioral effects. These results, in combination with previous findings following gestational treatment with other selective neurotransmitter reuptake inhibitors, highlight the diverse effects of multiple monoamine systems thought to be involved in maternal care

    Prenatal cocaine exposure affects social behavior in Sprague-Dawley rats

    Get PDF
    Children prenatally exposed to cocaine are reported to exhibit inappropriate social behavior, including aggression. We have recently observed a similar phenomenon in rats prenatally exposed to cocaine. Pregnant females were injected twice daily with 15 mg/kg cocaine hydrochloride or saline on gestation days l–20. Offspring were tested for social behavior towards two unfamiliar, untreated rats of the same age and sex. Cocaine-treated males (90 PND) took longer to reciprocate contact and cocaine-treated females (60 PND) spent more time rough grooming unfamiliar females. Male cocaine offspring (180 PND) tested for aggression exhibited an increased frequency and duration and decreased latency to chase an intruder. ACTH was lower in cocaine-treated males (150–180 PND) following plus-maze exposure or exposure to an unfamiliar male. Our data indicate that prenatal cocaine treatment in rats increases fear or aggression responses, dependent on sex and stimulus situation

    The Translational Role of Diffusion Tensor Image Analysis in Animal Models of Developmental Pathologies

    Get PDF
    Diffusion Tensor Magnetic Resonance Imaging (DTI) has proven itself a powerful technique for clinical investigation of the neurobiological targets and mechanisms underlying developmental pathologies. The success of DTI in clinical studies has demonstrated its great potential for understanding translational animal models of clinical disorders, and preclinical animal researchers are beginning to embrace this new technology to study developmental pathologies. In animal models, genetics can be effectively controlled, drugs consistently administered, subject compliance ensured, and image acquisition times dramatically increased to reduce between-subject variability and improve image quality. When pairing these strengths with the many positive attributes of DTI, such as the ability to investigate microstructural brain organization and connectivity, it becomes possible to delve deeper into the study of both normal and abnormal development. The purpose of this review is to provide new preclinical investigators with an introductory source of information about the analysis of data resulting from small animal DTI studies to facilitate the translation of these studies to clinical data. In addition to an in depth review of translational analysis techniques, we present a number of relevant clinical and animal studies using DTI to investigate developmental insults in order to further illustrate techniques and to highlight where small animal DTI could potentially provide a wealth of translational data to inform clinical researchers

    Use of High Resolution 3D Diffusion Tensor Imaging to Study Brain White Matter Development in Live Neonatal Rats

    Get PDF
    High resolution diffusion tensor imaging (DTI) can provide important information on brain development, yet it is challenging in live neonatal rats due to the small size of neonatal brain and motion-sensitive nature of DTI. Imaging in live neonatal rats has clear advantages over fixed brain scans, as longitudinal and functional studies would be feasible to understand neuro-developmental abnormalities. In this study, we developed imaging strategies that can be used to obtain high resolution 3D DTI images in live neonatal rats at postnatal day 5 (PND5) and PND14, using only 3 h of imaging acquisition time. An optimized 3D DTI pulse sequence and appropriate animal setup to minimize physiological motion artifacts are the keys to successful high resolution 3D DTI imaging. Thus, a 3D rapid acquisition relaxation enhancement DTI sequence with twin navigator echoes was implemented to accelerate imaging acquisition time and minimize motion artifacts. It has been suggested that neonatal mammals possess a unique ability to tolerate mild-to-moderate hypothermia and hypoxia without long term impact. Thus, we additionally utilized this ability to minimize motion artifacts in magnetic resonance images by carefully suppressing the respiratory rate to around 15/min for PND5 and 30/min for PND14 using mild-to-moderate hypothermia. These imaging strategies have been successfully implemented to study how the effect of cocaine exposure in dams might affect brain development in their rat pups. Image quality resulting from this in vivo DTI study was comparable to ex vivo scans. fractional anisotropy values were also similar between the live and fixed brain scans. The capability of acquiring high quality in vivo DTI imaging offers a valuable opportunity to study many neurological disorders in brain development in an authentic living environment

    Development of Translational Methods in Spectral Analysis of Human Infant Crying and Rat Pup Ultrasonic Vocalizations for Early Neurobehavioral Assessment

    Get PDF
    The purpose of this article is to describe the development of translational methods by which spectrum analysis of human infant crying and rat pup ultrasonic vocalizations (USVs) can be used to assess potentially adverse effects of various prenatal conditions on early neurobehavioral development. The study of human infant crying has resulted in a rich set of measures that has long been used to assess early neurobehavioral insult due to non-optimal prenatal environments, even among seemingly healthy newborn and young infants. In another domain of study, the analysis of rat put USVs has been conducted via paradigms that allow for better experimental control over correlated prenatal conditions that may confound findings and conclusions regarding the effects of specific prenatal experiences. The development of translational methods by which cry vocalizations of both species can be analyzed may provide the opportunity for findings from the two approaches of inquiry to inform one another through their respective strengths. To this end, we present an enhanced taxonomy of a novel set of common measures of cry vocalizations of both human infants and rat pups based on a conceptual framework that emphasizes infant crying as a graded and dynamic acoustic signal. This set includes latency to vocalization onset, duration and repetition rate of expiratory components, duration of inter-vocalization-intervals and spectral features of the sound, including the frequency and amplitude of the fundamental and dominant frequencies. We also present a new set of classifications of rat pup USV waveforms that include qualitative shifts in fundamental frequency, similar to the presence of qualitative shifts in fundamental frequency that have previously been related to insults to neurobehavioral integrity in human infants. Challenges to the development of translational analyses, including the use of different terminologies, methods of recording, and spectral analyses are discussed, as well as descriptions of automated processes, software solutions, and pitfalls

    Effects of chronic cocaine administration on aggressive behavior in virgin rats

    Get PDF
    Lubin, Deborah, A, Kathleen E Meter, Cheryl H Walker and Josephine M Johns: Effects Of Chronic Cocaine Administration On Aggressive Behavior In Virgin Rats. 1 Virgin Sprague-Dawley rats received subcutaneous injections of saline, 3.5, 7. 5 or 15 mg/kg of cocaine, twice daily, for 20 consecutive days 2 Females were videotaped for 10 minutes in the presence of a male rat for assessment of aggression towards the intruder 2, 3, and 5 days following cessation of cocaine or saline administration Oxytocin levels in discrete brain areas were assayed following behavioral testing, 5 days following cessation of cocaine or saline administration 3 The 30 mg/kg-dose group tended to have a lower frequency of fight attacks and aggressive postures compared to saline-treated controls across sessions 4 The frequency of most of the behaviors analyzed were represented by quadratic functions across time, such that the highest frequency of behavior occurred 2 days following the final injection with relatively less activity 3 and 5 days following cessation of saline or cocaine administration 5 The 30 mg/kg cocaine-treated group had significantly lower hippocampal OT levels than the 15 mg/kg group 5 days following cessation of cocaine or saline administration

    An oxytocin antagonist infused into the central nucleus of the amygdala increases maternal aggressive behavior.

    Get PDF
    Decreased oxytocin levels in the amygdalas of rat dams following chronic gestational cocaine exposure have been correlated with heightened maternal aggressive behavior. In this experiment, drug-naive dams were implanted with bilateral cannulas into the central nucleus of the amygdala (CNA) or control area and infused with 1,000 or 500 ng of an oxytocin antagonist (OTA) or buffer, 4 hr before testing. Behavior was compared among dams infused with OTA into target areas just outside the CNA and cocaine-treated dams (infused with buffer). Dams infused with 1,000 ng OTA attacked intruders significantly more often than buffer-infused dams. OTA did not affect other behaviors, suggesting that disruption of oxytocin activity in the CNA may be sufficient to selectively alter maternal aggressive behavior

    Cocaine Disrupts Pup-Induced Maternal Behavior in Juvenile and Adult Rats

    Get PDF
    Impaired onset of maternal behavior in first generation rat dams was previously correlated with rearing by cocaine-treated dams and prenatal cocaine exposure. Pup-induced maternal behavior in non-lactating rats has not been examined with regard to cocaine exposure and rearing conditions. First generation male and female juveniles and young adult males reared by cocaine-treated or control dams and prenatally exposed to either cocaine or control conditions were tested for pup-induced maternal behavior at postnatal days 28 and 60. We now report disruptions in pup-induced maternal behavior in both 28 and 60 day old first generation offspring attributable to rearing condition and prenatal cocaine exposure. Originally published Neurotoxicology and Teratology, Vol. 29, No. 6, Nov 200

    Effects of prenatal cocaine exposure on early postnatal rodent brain structure and diffusion properties

    Get PDF
    Prenatal cocaine exposure has been associated with numerous behavioral phenotypes in clinical populations, including impulsivity, reduced attention, alterations in social behaviors, and delayed language and sensory-motor development. Detecting associated changes in brain structure in these populations has proven difficult, and results have been inconclusive and inconsistent. Due to their more controlled designs, animal models may shed light on the neuroanatomical changes caused by prenatal cocaine; however, to maximize clinical relevance data must be carefully collected using translational methods. The goal of this study was two-fold: 1) determine if prenatal cocaine alters developmental neuroanatomy using methods that are available to human researchers, specifically structural MRI and diffusion tensor imaging; and 2) to determine the feasibility of rodent in vivo neuroimaging for usage in longitudinal studies of developmental disorders. Cocaine-exposed (prenatal days 1–20, 30mg/kg/day) rat pups were sedated and imaged live using diffusion tensor imaging and postmortem (fixed) using magnetic resonance histology on postnatal day 14. Volume and diffusion properties in whole brain as well as specific regions of interest were then assessed from the resulting images. Whole brain analyses revealed that cocaine-exposed animals showed no change in whole brain volume. Additionally, we found alterations in fractional anisotropy across regions associated with reward processing and emotional regulation, especially in the thalamus and globus palladus, as well as sex-dependent effects of cocaine in the right cortex. Reductions in fractional anisotropy were paired with reductions only in axial diffusivity, which preliminarily suggests that the changes observed here may be due to axonal damage, as opposed to reductions in myelination of the affected regions/pathways. Our data indicate that prenatal cocaine may target a number of developing brain structures, but does not result in overt changes to brain volumes. These results highlight not only the brain alterations that result from prenatal cocaine, but also the advancements in live imaging that allow longitudinal study designs in other models
    corecore