136 research outputs found

    Identifying Transcripts with Tandem Duplications from RNA‐Sequencing Data to Predict BRCA1‐Type Primary Breast Cancer

    Get PDF
    SIMPLE SUMMARY: Homologous recombination repair deficiency (HRD) is a biomarker for the response to PARP inhibitor anti-cancer treatment. Therefore, methods that detect the HRD phenotype in cancers in a (cost-)effective manner are pivotal. In this respect, the HRDetect and CHORD algorithms were developed to classify (the type of) HRD cancers from whole genome sequencing data. In addition, functional assays have also been established, but these require fresh cancer tissue. Here we present a novel method to specifically classify BRCA1-type HRD from RNA-sequencing data with high sensitivity. BRCA1-type cancers typically display small (<10 kb) tandem duplications, in contrast to BRCA2-type cancers. By detecting these small TDs among transcripts, we increase the toolbox for detecting HRD with a method that does not require whole genome sequencing of both tumor and normal tissue. ABSTRACT: Patients with cancers that are deficient for homologous recombination repair (HRD) may benefit from PARP inhibitor treatment. Therefore, methods that identify such cancers are crucial. Using whole genome sequencing data, specific genomic scars derived from somatic mutations and genomic rearrangements can identify HRD tumors, with only BRCA1-like HRD cancers profoundly displaying small (<10 kb) tandem duplications (TDs). In this manuscript we describe a method of detecting BRCA1-type HRD in breast cancer (BC) solely from RNA sequencing data by identifying TDs surfacing in transcribed genes. We find that the number of identified TDs (TD-score) is significantly higher in BRCA1-type vs. BRCA2-type BCs, or vs. HR-proficient BCs (p = 2.4 × 10(−6) and p = 2.7 × 10(−12), respectively). A TD-score ≥2 shows an 88.2% sensitivity (30 out of 34) to detect a BRCA1-type BC, with a specificity of 64.7% (143 out of 221). Pathway enrichment analyses showed genes implicated in cancer to be affected by TDs of which PTEN was found significantly more frequently affected by a TD in BRCA1-type BC. In conclusion, we here describe a novel method to identify TDs in transcripts and classify BRCA1-type BCs with high sensitivity

    Integrative whole-genome and transcriptome analysis of HER2-amplified metastatic breast cancer

    Get PDF
    Background: In breast cancer, the advent of anti-HER2 therapies has made HER2+ tumors a highly relevant subgroup. However, the exact characteristics which prohibit clinical response to anti-HER2 therapies and drive disease progression are not yet fully known. Integrative whole-genome and transcriptomic sequencing data from both primary and metastatic HER2-positive breast cancer will enhance our understanding of underlying biological processes. Methods: Here, we used WGS and RNA sequencing data of 700 metastatic breast tumors, of which 68 being HER2+, to search for specific genomic features of HER2+ disease and therapy resistance. Furthermore, we integrated results with transcriptomic data to associate tumors exhibiting a HER2+-specific gene expression profile with ERBB2 mutation status, prior therapy and relevant gene expression signatures.Results: Overall genomic profiles of primary and metastatic HER2+ breast cancers were similar, and no specific acquired genomics traits connected to prior anti-HER2 treatment were observed. However, specific genomic features were predictive of progression-free survival on post-biopsy anti-HER2 treatment. Furthermore, a HER2-driven expression profile grouped HER2-amplified tumors with ERBB2-mutated cases and cases without HER2 alterations. The latter were reported as ER positive in primary disease, but the metastatic biopsy showed low ESR1 expression and upregulation of the MAPK pathway, suggesting transformation to ER independence.Conclusions:In summary, although the quantity of variants increased throughout HER2-positive breast cancer progression, the genomic composition remained largely consistent, thus yielding no new major processes beside those already operational in primary disease. Our results suggest that integrated genomic and transcriptomic analyses may be key in establishing therapeutic options.</p

    A Compendium of AR Splice Variants in Metastatic Castration-Resistant Prostate Cancer

    Get PDF
    Treatment-induced AR alterations, including AR alternative splice variants (AR-Vs), have been extensively linked to harboring roles in primary and acquired resistance to conventional and next-generation hormonal therapies in prostate cancer and therefore have gained momentum. Our aim was to uniformly determine recurrent AR-Vs in metastatic castration-resistant prostate cancer (mCRPC) using whole transcriptome sequencing in order to assess which AR-Vs might hold potential diagnostic or prognostic relevance in future research. This study reports that in addition to the promising AR-V7 as a biomarker, AR45 and AR-V3 were also seen as recurrent AR-Vs and that the presence of any AR-V could be associated with higher AR expression. With future research, these AR-Vs may therefore harbor similar or complementary roles to AR-V7 as predictive and prognostic biomarkers in mCRPC or as proxies for abundant AR expression.</p

    Circulating Tumour DNA as Biomarker for Colorectal Liver Metastases:A Systematic Review and Meta-Analysis

    Get PDF
    Circulating tumour DNA (ctDNA) is a potential biomarker that could contribute to more judicious patient selection for personalised treatment. This review and meta-analysis gives an overview of the current knowledge in the literature investigating the value of ctDNA in patients with colorectal liver metastases (CRLM). A systematic search was conducted in electronic databases for studies published prior to the 26th of May 2023. Studies investigating the association between ctDNA and oncological outcomes in patients undergoing curative-intent local therapy for CRLM were included. Meta-analyses were performed to pool hazard ratios (HR) for the recurrence-free survival (RFS) and overall survival (OS). A total of eleven studies were included and nine were eligible for meta-analyses. Patients with detectable ctDNA after surgery experienced a significantly higher chance of recurrence (HR 3.12, 95% CI 2.27–4.28, p &lt; 0.000010) and shorter OS (HR 5.04, 95% CI 2.53–10.04, p &lt; 0.00001) compared to patients without detectable ctDNA. A similar association for recurrence was found in patients with detectable ctDNA after the completion of adjuvant therapy (HR 6.39, 95% CI 2.13–19.17, p &lt; 0.0009). The meta-analyses revealed no association between detectable ctDNA before surgery and the RFS and OS. These meta-analyses demonstrate the strong association between detectable ctDNA after treatment and oncological outcomes in CRLM patients.</p

    Aberrant APOBEC3B Expression in Breast Cancer Is Linked to Proliferation and Cell Cycle Phase

    Get PDF
    APOBEC3B (A3B) is aberrantly overexpressed in a subset of breast cancers, where it associates with advanced disease, poor prognosis, and treatment resistance, yet the causes of A3B dysregulation in breast cancer remain unclear. Here, A3B mRNA and protein expression levels were quantified in different cell lines and breast tumors and related to cell cycle markers using RT-qPCR and multiplex immunofluorescence imaging. The inducibility of A3B expression during the cell cycle was additionally addressed after cell cycle synchronization with multiple methods. First, we found that A3B protein levels within cell lines and tumors are heterogeneous and associate strongly with the proliferation marker Cyclin B1 characteristic of the G2/M phase of the cell cycle. Second, in multiple breast cancer cell lines with high A3B, expression levels were observed to oscillate throughout the cell cycle and again associate with Cyclin B1. Third, induction of A3B expression is potently repressed throughout G0/early G1, likely by RB/E2F pathway effector proteins. Fourth, in cells with low A3B, induction of A3B through the PKC/ncNF-κB pathway occurs predominantly in actively proliferating cells and is largely absent in cells arrested in G0. Altogether, these results support a model in which dysregulated A3B overexpression in breast cancer is the cumulative result of proliferation-associated relief from repression with concomitant pathway activation during the G2/M phase of the cell cycle.</p

    Identification, validation and clinical implementation of cancer biomarkers: Translational strategies of the EORTC PathoBiology Group

    Get PDF
    AbstractThe increasing demand for personalized cancer therapy requires a strong, intense, and continuous collaboration between pre-clinical and clinical investigators. As a part of the EORTC Translational Research Divison, the EORTC PathoBiology Group (EORTC PBG), focuses on discovery and validation of cancer biomarkers, providing both scientific evidence as well as quality assurance. The clinically relevant target-identification and validation studies carried out in the last decades within the EORTC PBG represent a paradigm for EORTC studies in which laboratory investigations on human biologic material are used to support the development of drugs directed to defined target molecules. The experience acquired within the EORTC PBG with respect to standardization of cancer biomarker test kits and reagents, quality assessment/assurance of cancer biomarker determinations, development of standard operating procedures for assessment of these markers as well as instruction of methodologies and teaching of ethical issues represent a valuable contribution of the EORTC PBG to the onco-translational strategies of the EORTC

    Prognostic Impact of HER2 and ER Status of Circulating Tumor Cells in Metastatic Breast Cancer Patients with a HER2-Negative Primary Tumor

    Get PDF
    AbstractBACKGROUND: Preclinical and clinical studies have reported that human epidermal growth factor receptor 2 (HER2) overexpression yields resistance to endocrine therapies. Here the prevalence and prognostic impact of HER2-positive circulating tumor cells (CTCs) were investigated retrospectively in metastatic breast cancer (MBC) patients with a HER2-negative primary tumor receiving endocrine therapy. Additionally, the prevalence and prognostic significance of HER2-positive CTCs were explored in a chemotherapy cohort, as well as the prognostic impact of the estrogen receptor (ER) CTC status in both cohorts. METHODS: Included were MBC patients with a HER2-negative primary tumor, with ≥1 detectable CTC, starting a new line of treatment. CTCs were enumerated using the CellSearch system, characterized for HER2 with the CellSearch anti-HER2 phenotyping reagent, and characterized for ER mRNA expression. Primary end point was progression-free rate after 6 months (PFR6months) of endocrine treatment in HER2-positive versus HER2-negative CTC patients. RESULTS: HER2-positive CTCs were present in 29% of all patients. In the endocrine cohort (n=72), the PFR6months was 53% for HER2-positive versus 68% for HER2-negative CTC patients (P=.23). In the chemotherapy cohort (n=82), no prognostic value of HER2-positive CTCs on PFR6months was observed either. Discordances in ER status between the primary tumor and CTCs occurred in 25% of all patients but had no prognostic value in exploratory survival analyses. CONCLUSION: Discordances regarding HER2 status and ER status between CTCs and the primary tumor occurred frequently but had no prognostic impact in our MBC patient cohorts

    Transcriptomic properties of her2+ ductal carcinoma in situ of the breast associate with absence of immune cells

    Get PDF
    SIMPLE SUMMARY: Tumor-infiltrating lymphocytes (TILs) are likely to play a role in the biological behavior of HER2+ ductal carcinoma in situ (DCIS). To prevent invasiveness, the potential of targeted immune-modulating treatment of HER2+ DCIS has been explored. We identified a 29-gene expression profile that was associated with the density of TILs. These genes included CCND3, DUSP10 and RAP1GAP, which may guide towards more rationalized choices with respect to immune-mediated therapy in HER2+ DCIS, such as targeted vaccine therapy. ABSTRACT: The identification of transcriptomic alterations of HER2+ ductal carcinoma in situ (DCIS) that are associated with the density of tumor-infiltrating lymphocytes (TILs) could contribute to optimizing choices regarding the potential benefit of immune therapy. We compared the gene expression profile of TIL-poor HER2+ DCIS to that of TIL-rich HER2+ DCIS. Tumor cells from 11 TIL-rich and 12 TIL-poor DCIS cases were micro-dissected for RNA isolation. The Ion AmpliSeq Transcriptome Human Gene Expression Kit was used for RNA sequencing. After normalization, a Mann–Whitney rank sum test was used to analyze differentially expressed genes between TIL-poor and TIL-rich HER2+ DCIS. Whole tissue sections were immunostained for validation of protein expression. We identified a 29-gene expression profile that differentiated TIL-rich from TIL-poor HER2+ DCIS. These genes included CCND3, DUSP10 and RAP1GAP, which were previously described in breast cancer and cancer immunity and were more highly expressed in TIL-rich DCIS. Using immunohistochemistry, we found lower protein expression in TIL-rich DCIS. This suggests regulation of protein expression at the posttranslational level. We identified a gene expression profile of HER2+ DCIS cells that was associated with the density of TILs. This classifier may guide towards more rationalized choices regarding immune-mediated therapy in HER2+ DCIS, such as targeted vaccine therapy

    Tumor-agnostic ctDNA levels by mFAST-SeqS in first-line HR-positive, HER2 negative metastatic breast cancer patients as a biomarker for survival

    Get PDF
    This prospective cohort study reports aneuploidy score by mFast-SeqS as a strong prognostic marker in MBC patients. mFAST-SeqS is an affordable and easily implementable method for the assessment of total ctDNA levels and, as such, provides an alternative prognostic tool. One mixed cohort (cohort A, n = 45) starting any type of treatment in any line of therapy and one larger cohort (cohort B, n = 129) consisting of patients starting aromatase inhibitors (AI) as first-line therapy were used. mFAST-SeqS was performed using plasma of blood in which CTCs (CellSearch) were enumerated. The resulting aneuploidy score was correlated with categorized CTC count and associated with outcome. The aneuploidy score was significantly correlated with CTC count, but discordance was observed in 31.6% when applying cut-offs of 5. In both cohorts, aneuploidy score was a significant prognostic marker for both PFS and OS. In the Cox regression models, the HR for aneuploidy score for PFS was 2.52 (95% CI: 1.56–4.07), and the HR for OS was 2.37 (95% CI: 1.36–4.14). Results presented here warrant further investigations into the clinical utility of this marker in MBC patients.</p
    corecore