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Simple Summary: Homologous recombination repair deficiency (HRD) is a biomarker for the
response to PARP inhibitor anti-cancer treatment. Therefore, methods that detect the HRD phenotype
in cancers in a (cost-)effective manner are pivotal. In this respect, the HRDetect and CHORD
algorithms were developed to classify (the type of) HRD cancers from whole genome sequencing
data. In addition, functional assays have also been established, but these require fresh cancer tissue.
Here we present a novel method to specifically classify BRCA1-type HRD from RNA-sequencing
data with high sensitivity. BRCA1-type cancers typically display small (<10 kb) tandem duplications,
in contrast to BRCA2-type cancers. By detecting these small TDs among transcripts, we increase the
toolbox for detecting HRD with a method that does not require whole genome sequencing of both
tumor and normal tissue.

Abstract: Patients with cancers that are deficient for homologous recombination repair (HRD) may
benefit from PARP inhibitor treatment. Therefore, methods that identify such cancers are crucial.
Using whole genome sequencing data, specific genomic scars derived from somatic mutations and
genomic rearrangements can identify HRD tumors, with only BRCA1-like HRD cancers profoundly
displaying small (<10 kb) tandem duplications (TDs). In this manuscript we describe a method of
detecting BRCA1-type HRD in breast cancer (BC) solely from RNA sequencing data by identify-
ing TDs surfacing in transcribed genes. We find that the number of identified TDs (TD-score) is
significantly higher in BRCA1-type vs. BRCA2-type BCs, or vs. HR-proficient BCs (p = 2.4 × 10−6

and p = 2.7 × 10−12, respectively). A TD-score ≥2 shows an 88.2% sensitivity (30 out of 34) to
detect a BRCA1-type BC, with a specificity of 64.7% (143 out of 221). Pathway enrichment analyses
showed genes implicated in cancer to be affected by TDs of which PTEN was found significantly
more frequently affected by a TD in BRCA1-type BC. In conclusion, we here describe a novel method
to identify TDs in transcripts and classify BRCA1-type BCs with high sensitivity.

Keywords: BRCA1-type breast cancer; homologous recombination repair deficiency; tandem
duplication; RNA sequencing; classification algorithm; cancer driver enrichment; PTEN inactivation

1. Introduction

The incidence of breast cancer (BC) is regarded as the highest among malignancies
in women worldwide and is still climbing by 0.3% per year [1]. One of the strongest risk
factors for developing BC is a family history of the disease [2]. About 20–25% of familial
BC patients inherit mutations in BC susceptibility genes BRCA1, BRCA2, PALB2, CHEK2
or ATM. Germline mutations in BRCA1 are associated with a cumulative BC risk to age
80 of 72% (95% Confidence Interval (CI) = 65–79%) [3]. Therefore, BRCA1 is regarded as a
high-risk BC susceptibility gene [4].
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The protein encoded by BRCA1 has three different domains. The first is the RING
domain, which is positioned on the amino-terminal end of the protein and functions
as an E3 ubiquitin ligase. The second is the BRCT domain, of which two are located
on the carboxy-terminal end of the protein and function as phosphopeptide recognition
modules [5]. The third is the serine containing domain (SCD), which contains a large
number of phosphorylation sites and gets phosphorylated by ATM/ATR kinases upon DNA
damage [6]. With these different domains, BRCA1 is equipped with multiple functions,
consisting of interacting with other tumor suppressors, cell cycle checkpoint regulation and
mediating DNA repair [4].

Genomic instability is a core factor driving tumor development. In this respect, ho-
mologous recombination (HR) repair is one of the main DNA double-strand break (DSB)
repair pathways together with the non-homologous end joining (NHEJ) pathway [7]. HR
plays a prominent role in maintaining genome integrity by providing high-fidelity repair
using a copy of the intact sister chromatid during the S and G2 phases of the cell cycle
in proliferating cells [4]. Since BRCA1 and BRCA2 proteins serve a purpose of maintain-
ing genome integrity through HR-mediated DNA repair, mutations disrupting BRCA1
or BRCA2 function result in a HR-deficiency (HRD) phenotype [8]. As a consequence,
DSBs are repaired by the error-prone NHEJ pathway, resulting in accumulation of genetic
alterations [9]. Since HRD and inhibition of PARP are synthetically lethal, cancer patients
carrying BRCA1 or BRCA2 mutations benefit from PARP inhibitor therapy [10]. However,
not all HRD-associated BCs have a genetic defect in either BRCA1 or BRCA2 [11], therefore
identifying the HRD phenotype itself among cancers is crucial [9].

Recent developments in whole genome sequencing (WGS) have made it possible to
recognize HRD in BC by identifying specific genomic ‘scars’: signatures based on single base
substitutions (SBSs), small insertions and deletions (IDs) or rearrangements [12,13]. Previous
studies have shown that SBS signature 3 and 8 as well as ID signatures 6 and 8 are associated
with HRD [8,12,13]. Moreover, BRCA2-deficient tumors are associated with rearrangement
signature 5, whereas BRCA1-deficient tumors are associated with rearrangement signature
3, enabling subclassification among HRD tumors. The BRCA1-associated rearrangement
signature 3 is mainly characterized by small tandem duplications (TDs, <10 kb), a property
thus not identified among BRCA2-deficient BC [14]. Loss of BRCA1 function allows for
these TDs to arise at stalled replication forks through a replication restart-bypass mechanism.
This mechanism is terminated by either end joining or microhomology-mediated template
switching, the latter resulting in complex TD breakpoints [15].

To identify HRD using WGS data, two algorithms were developed. First HRDetect [8]
was described which uses 6 genomic parameters, among which rearrangement signatures 3
and 5. This algorithm is designed to predict the HRD status (i.e., deficient or proficient), not
to distinguish between BRCA1- and BRCA2-deficient HRD. A second model named Classi-
fier of Homologous Recombination Deficiency (CHORD) was also described to identify
HRD status. CHORD uses 29 genomic features, grouped into SBS, ID and rearrangement
signatures and is additionally able to distinguish BRCA1- from BRCA2-type HRD [16].

Here we aimed to use RNA sequencing (RNAseq) data as a source to identify genomic
TDs, the characteristic structural variant (SV) that is strongly associated with BRCA1-
deficient BC [14]. We describe a method to detect transcripts carrying TDs in RNAseq data,
which we compared with HRDetect and CHORD to evaluate how well RNAseq based TDs
mimic HRD predictions by these algorithms. Furthermore, we identify which genes are
affected by a TD of which PTEN is the most significant recurrent target.

2. Materials and Methods
2.1. Sequencing Data

RNAseq data were generated at our lab for the BASIS consortium [14,17] for a subset
of 266 primary BCs from a total of 560 that were whole genome sequenced. Genome
and transcriptome data are available through the European Genome Phenome Archive
under accession number EGAS00001001178. Internal Review Boards of each participating
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institution approved collection and use of samples of all patients in this study. Sequence
protocols of the samples were previously described in detail [14]. In short, total RNA after
genomic DNA removal, clean-up and depletion of ribosomal RNA using Duplex Specific
Nuclease treatment, was used as input for random-primed cDNA synthesis. Library
preparation and sequencing was performed as described [14] and paired-end (75 bases)
sequencing was performed on an Illumina HiSeq 2000. The resulting fastq files were
mapped to the human reference genome GRCh38 using STAR version 2.4.2a [18] and the
resulting bam files were sorted and indexed using Sambamba version 0.6.6 [19]. Gene
annotation was derived from GENCODE Release 23 (https://www.gencodegenes.org/
accessed on 16 June 2021).

2.2. Identification of TDs

To find sequence reads that identify TDs, a two-stage process is used. First, the
locations where so-called junction reads are mapped and used as candidate TD regions
(see Figure 1). In RNAseq, reads can span multiple exons and when sequencing total RNA
reads may also map to intron sequences. Junction reads are defined here as those that map
to a non-canonical gene structure. This would be a read where the 5′ end is mapped to
for example the 3′ end of exon 3, with the remaining bases in the read mapping to exon 2
(where exon 4 or intron 3 would be expected, see top panel Figure 1). Such a configuration
would usually indicate a circular molecule, and the genes that produce these circular RNAs
(circRNAs) were identified in our previous paper [20]. Of note, it is not required that
multiple exons are involved, this also applies to a single exon. However, junction reads can
also be derived from genes that harbor TDs, therefore, in the second stage, the read-mate
of the junction read is evaluated. If a read-mate maps within the region bounded by the
5′ and 3′ mapping locations of the junction read it could be either a circRNA or a TD
configuration [20]. However, if the read-mate of a junction read maps outside the region
then this read-pair is considered a TD read-pair (bottom panel Figure 1). For each sample,
the number of regions that show evidence of TD read-pairs is used as the TD-score.

Figure 1. Identifying transcripts with a TD region. Top panel schematically shows how a junction
read (green) would be located on the DNA reference. Introns are shown as horizontal lines. The 5′ of
the junction read maps to the 3′ end of exon 3, while the remainder of the read maps to the 5′ of exon
2. Since this is an unexpected orientation and depending on where the majority of the read maps,
the read is annotated as mapping to one of the boundaries. The unmapped bases are annotated as
soft clipped (S in the CIGAR score). The chromosomal positions of the junction ‘breakpoints’ are
used as the start and end of a region. The bottom panel shows a TD of exon 2–3, with the read mates
(purple) are partly or completely located outside the region defined by the chromosomal position of
the junction read locations.

https://www.gencodegenes.org/


Cancers 2022, 14, 753 4 of 11

In detail, a Perl script was developed to evaluate which of the junction regions iden-
tified by our method to identify circRNAs have read-pairs indicative of a TD. First, for
each sample only those junction regions exactly mapping to exon boundaries of the same
gene were included. For these selected regions, the reference sequence GRCh38 is used
to construct a virtual junction sequence by taking the first and last 100 nucleotides of
the region and concatenating these last to first. Next, RNAseq sequence reads that are
mapped to the region are selected when uniquely mapped and of high mapping quality
(MAPQ = 255 in STAR notation). When more than 4000 reads are present in the region,
only the first and last 2000 reads (mapping to the 5′ and 3′ end of the region) are included.
The sequence of these reads is re-mapped to the virtual junction sequence. This is done
since the desired junction reads are mapped by STAR but are soft clipped. For example,
a 75-base read can uniquely map with bases 1–50 to the 3′ end of a region with the last
25 bases annotated as soft clipped (Figure 1). This information is contained within the
Concise Idiosyncratic Gapped Alignment Report (CIGAR) score and would be annotated
as 50M25S. If these 25 bases exactly match the 5′ end of the region then the read is fully
complimentary to the virtual junction sequence. A minimum of 10 clipped bases is required
to prevent a match to the junction sequence by chance. Since the majority of the read is
already uniquely mapped to that region, 10 bases fully matching to the rest of the junction
sequence is considered sufficient. Next, the read mate of this junction read is evaluated if it
maps outside the region (indicated in top panel of Figure 1) using the insert size (ISIZE)
and position of read mate (MPOS) fields. If so, then the read pair is considered indicative
for a TD. Four scenarios are considered (Figure 1): a forward read (SAM flag 163 or 99)
mapped to the 5′ or 3′ end of a region with a reverse read mate mapped further than the 3′

end of the region, and conversely, a reverse read (flag 83 or 147) mapped to the 5′ or 3′ end
of a region with a forward read mate mapped before the 5′ start of a region.

2.3. Enrichment Analysis

To determine if genes affected by a TD have functional roles in common, an over-
representation analysis was performed using DAVID [21]. Gene Ontology, KEGG and
Biocarta databases were used for functional annotation. Pathways were considered signifi-
cant when the false discovery rate (FDR) corrected p-value was below 0.05.

2.4. Statistical Analyses

STATA v14 (StataCorp, College Station, TX, USA) and R v4.0.3 (https://www.R-
project.org/ accessed on 27 November 2020) were used to perform the statistical tests that
are indicated in the text. p-values are two sided and corrected for multiple testing using the
Hochberg method where necessary and were considered significant below 0.05.

3. Results

Small TDs of mainly 1–10 kb in size are one of the genomic scars that BRCA1-type
BCs uniquely produce [14]. In this study, we investigated whether these small TDs can
be identified in the transcriptome, using RNAseq data from a total of 266 primary BCs
with matching WGS data available. For these samples the HRD status was also available
as determined by HRDetect [8] and the CHORD algorithm [16]. Both HRDetect and the
CHORD algorithm are capable of distinguishing HRD from HR-proficient (HRP) samples
and classified 60 samples as HRD by HRDetect and 51 samples as HRD via CHORD
with 50 samples overlapping. HRDetect called 195 samples as HRP, while CHORD called
204 samples as HRP with 194 samples overlapping. In addition, CHORD is also able to
differentiate between BRCA1- and BRCA2-type HRD.

We aimed to identify TD regions using RNAseq data by finding sequence reads that
map to non-canonical exon-exon junctions that arises when an intragenic part is duplicated
consecutively (Figure 1). For each sample, the number of identified TD regions is used as a
TD-score. We used the TD-score as a classifier to identify the BRCA1-type HRD phenotype

https://www.R-project.org/
https://www.R-project.org/
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as established by CHORD. Furthermore, we also studied the gene transcripts that were
(recurrently) affected by a TD in samples with a BRCA1-type phenotype.

3.1. Abundance of TD Regions

In total, 565 TD regions were identified in 266 primary BC samples (Table S1). In
almost a third of the samples (n = 84, 31.6%) we did not observe any TDs in the RNAseq
data. Overall, the per-sample average is 2.12 (95% CI = 1.75–2.50) and the amount of TDs
per sample ranges from 0–25 (Figure 2A). We evaluated if these TDs found in RNA were
also reported in the DNA of the same sample: 64% (105 out of 164) of the TDs found
in RNAseq data matched with a reported TD in DNA (Table S1). Next, we associated
the TD-score with CHORD classification. According to CHORD, 34 samples are BRCA1-
type (13%), 17 are BRCA2-type (6%) and 204 samples are HRP (77%) with the remaining
11 samples without CHORD-call (‘cannot be determined’). Figure 2B clearly shows that
the TD-score is significantly higher in the BRCA1-type samples (Mann–Whitney U-test
[MWU] p = 2.4 × 10−6 and p = 2.7 × 10−12 for BRCA1-type vs. BRCA2-type or HRP,
respectively). The median TD scores are 5, 0 and 1 for BRCA1-type, BRCA2-type and HRP
BCs, respectively. The TD score was also significantly higher in the HRD compared to HRP
BCs based on the HRDetect calls (MWU p = 8.9× 10−10, Figure S1A) and the BRCA1 mutant
BCs versus the BRCA2 mutant or wild-type BCs (MWU p = 8.3 × 10−3 and p = 2.0 × 10−4

respectively, Figure S1B). Finally, we also verified the distribution of the TD-score among
rearrangement signature-derived clustering of primary BC reported by Nik-Zainal et al. in
their Figure 5 [14]. Cluster D, which consists of almost all BRCA1-mutated samples and
having a profound number of TDs at the genomic level, showed a significantly higher
TD-score compared to all other groups (MWU all p < 1.6 × 10−4, Figure S1C).

Figure 2. Distribution of TD-score in all samples (A) and by CHORD-call (B). p-values are from
Mann–Whitney U-test. Sample sizes are n = 34, n = 17 and n = 204 for BRCA1- and BRCA2-type HRD
and HRP, respectively.

3.2. Power of the TD-Score to Predict BRCA1-Type HRD

To evaluate how well the TD score, based on RNAseq, approximates the BRCA1-
type call as assigned by CHORD using WGS data, we performed a receiver operating
characteristic (ROC) analysis (Figure 3). We labelled the BRCA1-type BCs as one group,
with the other group containing both the BRCA2-type and HRP BCs. The area under the
curve (AUC) for the TD score is 0.87 (95% CI = 0.80–0.93, p = 1 × 10−27), thus showing a
high predictive power to classify these groups. When using a cut-off of ≥2 TD-regions, the
sensitivity to detect a BRCA1-type BC is 88.2% (30 out of 34) with a specificity of 64.7%
(143 out of 221). Figure S1D shows an overview of the TD score and BRCA1/2 bi-allelic
inactivation status in CHORD-positive cases. Since the majority of BRCA1-mutated patients
are diagnosed with ER-negative BC, another use-case for the TD score would be in this
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specific subgroup [22]. Therefore, within ER-negative samples (n = 74) the sensitivity to
detect BRCA1-type BC is 87.1% (27 out of 31) with a 51.2% specificity (22 out of 43) using a
cut-off of ≥2 TDs.

Figure 3. ROC curve of TD score to predict a BRCA1-type BC. Diagonal black line indicates a
diagnostic test with performance no better than chance.

3.3. Genes Affected by TDs in BRCA1-Type Samples

To investigate whether the transcribed genes that show TDs might have a functional
role in the BRCA1-type BCs, we evaluated all 164 identified TDs (Table S1). In total,
141 genes were affected by a TD with 17 genes recurrently affected (Table 1). Next, we
performed an over-representation analysis [21] to investigate common functional roles for
the 141 genes. In total, 8 pathways were found to be significant (FDR < 0.05, details in Table
S2), but had very broad descriptions: ‘nucleoplasm’ and ‘nucleus’ (Gene Ontology [GO]
cellular component), ‘protein- and histone binding’ (GO molecular function) and ‘focal
adhesion’, ‘pathways in cancer’, ‘small cell lung cancer’ and ‘prostate cancer’ (KEGG).

Table 1. Genes recurrently affected by a TD in BRCA1-type BC. The FDR is calculated using the
Hochberg method.

Gene N of BRCA1-Type
Samples with a TD

N of BRCA2-Type &
HRP Samples with a TD

Nominal
p-Value FDR

POMT1 4 13 0.257 0.627
ASPH 3 12 0.431 0.627

CDKAL1 3 1 0.008 0.119
PTEN 3 0 0.002 0.034
RAP1B 3 4 0.052 0.26
AACS 2 0 0.017 0.119
AKT3 2 1 0.048 0.26

AMY2B 2 8 0.627 0.627
CREBBP 2 0 0.017 0.119

EZH2 2 0 0.017 0.119
KIAA1217 2 0 0.017 0.119

LRP6 2 0 0.017 0.119
NPM1 2 4 0.184 0.627

PPP6R3 2 0 0.017 0.119
PRPSAP2 2 0 0.017 0.119

TTC23 2 0 0.017 0.119
ZNF562 2 0 0.017 0.119

N, number; TD, tandem duplication; HRP, homologous recombination repair proficient; FDR, false discovery rate.
Bold indicates the significant finding.
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Next, we investigated the genes that were recurrently affected (Table 1). To check
which of these recurrent genes were significantly enriched in the BRCA1-type BCs, we
compared the frequencies in the BRCA1-type versus the non-BRCA1-type group using a
Fisher’s exact test. After correcting for multiple testing, only PTEN was found significantly
more often affected by a TD (FDR < 0.05) and exclusively in the BRCA1-type group. Three
separate samples had a TD in PTEN, all of which having a different set of exons that are
duplicated. In addition, all were fully concordant with the known DNA breakpoints in the
WGS data of these BCs (Table 2). Additional details are shown in Figure 4 for the BC where
exons 3, 4 and 5 of PTEN are duplicated, including a read spanning the non-canonical
junction of exon 5 to 3 of mature mRNA. As our samples were processed using a ribosomal
depletion method rather than a poly-A selection step, pre-mRNA was also sequenced.
In the sample shown in Figure 4, intronic RNA reads were identified exactly covering
the DNA breakpoint where the TD was reported. Figure S2 shows further details of this
intronic breakpoint read.

Table 2. Recurrent TDs in PTEN. Breakpoint coordinates are based on human reference genome GRCh38.

Sample N TD
Read-Pairs Size (bp) Start of Region

(Exon N)
End of Region

(Exon N)
Effect on
Protein

DNA 5′

Breakpoint
DNA 3′

Breakpoint

p1 6 7739 3 5 out of frame 87,924,739 87,934,651
p2 13 2206 4 5 out of frame 87,926,191 87,941,211
p3 2 239 5 5 in frame 87,932,213 87,935,777

N, number; TD, tandem duplication; bp, base pairs.

Figure 4. Example of a TD in PTEN. DNA breakpoints were identified before exon 3 and after exon 5,
leading to a TD of these 3 exons. In the RNAseq data, sequence reads were identified spanning both the
intron breakpoints as well as the resulting transcriptome junction of exon 5 to exon 3. Introns are indicated
by the arrowed lines and are not to scale. Coordinates are from the GRCh38 reference sequence.

4. Discussion

Since a major characteristic of BRCA1-mutated breast cancer is an overabundance of
small TDs [14], we here describe a method to identify transcripts with TDs using RNAseq
and applied this method to a large cohort of BC samples. We showed that the number of
TDs identified in RNAseq data strongly associated with HRD, specifically of the BRCA1-
type. We additionally show that among the affected genes, PTEN was found significantly
recurrent and exclusively in three BRCA1-type samples.

It proved possible to find sequence reads in RNAseq data that match to a configuration
of tandem duplicated exons in a transcript. Although the exact mechanism on how these
repeated exons are formed cannot be determined from RNAseq alone, we expect these
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to be mainly derived from TDs occurring on the genome. It is important to realize that
only small TDs are expected to disrupt the gene structure; large duplications will yield
extra copies of a complete gene, without affecting the intragenic transcript. Thus, a priori
TDs identified via RNAseq are more likely to be caused by a BRCA1-type HRD than other
mechanisms. Of note, in depth experiments showed how replication restart mechanisms at
stalled replication forks, with a role for end joining or microhomology-mediated template
switching, form the basis of generating TDs in BRCA1 mutant cells [15]. Consistent with
their different roles in HR repair, BRCA2-type cancers do not display these small TDs,
but very specifically harbor small (<10 kb) deletions [14]. Another possible mechanism
explaining how TDs appear in RNAseq data, independent of genomic SVs, could be some
form of atypical splicing that would lead to duplications of exons in the transcript; to
the best of our knowledge this has never been reported. Finally, we can’t exclude false
positives; intricate errors in the complete process of the RNAseq protocol may give rise
to erroneous mapping or otherwise sequencing errors. Matching our identified TDs from
RNAseq with reported SVs in the genome of the respective samples, we found that indeed
not all TDs found in RNAseq showed a corresponding TD event on the DNA of the tumor.
Of note, the WGS sequence coverage was potentially too low to detect all possible SVs
(median coverage was 40×).

Regardless of these aspects, we showed that the number of identified TDs was sig-
nificantly higher in samples classified as HRD (by HRDetect) and specifically samples of
BRCA1-type (by CHORD). It must be noted that although these algorithms appear very
robust [8,16], there is no general agreed-upon “gold-standard” to classify HRD. However,
an ROC analysis using the TD score showed a significant, high concordance with the
BRCA1-type classification of CHORD. The chosen cutoff of at least 2 TD events shows a
high sensitivity (88% in all samples and 87% in ER-negatives) but we recognize that this
threshold needs to be validated in independent samples before diagnostic credibility is to
be given to it. For example, sequencing depth of the RNA will be a major component in
establishing a reliable threshold. Since it is a prerequisite to have a specific junction read in
order to identify a TD, such reads are quite rare when considering all reads mapped to a
gene. Thus, with a too shallow sequencing depth these rare junction reads may be missed.
This in turn will influence the number of identified TDs in a sample and ultimately the
threshold to establish the BRCA1-type BC from RNAseq.

The limitation of the current method is that we are effectively measuring one of the
genomic scars HRD BC samples show, albeit ‘small TDs’ is a key feature with the second
highest weight in both the HRDetect and CHORD algorithms. Further approximation
of the genomic features the CHORD algorithm uses (i.e., SBSs and IDs) is hindered by
the absence of sequenced matched normal RNA, making the identification of somatic
SBSs and IDs troublesome. So, by just scoring TDs, we do see some HRP samples having
elevated numbers of TDs (both on DNA and RNA) and conversely BRCA1-type samples
(via CHORD) with no (n = 1) or just 1 TD (n = 3) in RNAseq. We think these disadvantages
are a reasonable trade-off since RNAseq analyses are much less costly and technically less
complicated compared to full WGS of both tumor and matched normal tissue to establish
all necessary genomic features. Although the current dataset of 266 BC cases is sufficient at
this stage for identifying TDs in RNAseq data and relating the TD-score to CHORD, results
from additional independent datasets would be required to determine clinical applicability.
We have therefore tried to confirm our results in the metastatic breast cancer cohort of the
Center for Personalized Cancer Treatment [16,23,24]. However, in this cohort of 160 samples
for which RNAseq data was available only 9 cases were of the BRCA1-type. Although the
BRCA1-type samples had a significantly higher TD-score compared to the other samples
(median of 6 vs. 0; MWU p = 6.9 × 10−3), we consider the dataset too small to represent
a proper validation. In summary, with the knowledge that no golden-standard HRD test
exists to identify patients that may benefit from PARP inhibitors, and that about half of
the HRD patients may be missed when solely focusing on bi-allelic BRCA1 or BRCA2
inactivation [16], we argue that standardized studies are needed to evaluate if the balance
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tips in favor of the precision of WGS or the ease-of-use of RNAseq to fully establish the
(cost-)effectiveness of a HRD test.

Overrepresentation analysis on the genes affected by TDs identified enriched func-
tional roles in ‘nucleoplasm’ and ‘nucleus’, ‘protein- and histone binding’, ‘focal adhesion’,
‘pathways in cancer’, ‘small cell lung cancer’ and ‘prostate cancer’. As TDs occur a priori at
random, the observed enrichment in the rather general functional roles is likely a reflection
of the tumorigenic selection pressure. Interestingly, we identified TDs in breast cancer
driver genes CREBBP, KMT2C, MSH2, PTEN, RB1, RUNX1, and SETD2 [14].

Most interestingly, we identified recurrent TDs in the PTEN gene, exclusively in
BRCA1- type HRD samples. The TDs in the three samples consisted of different exon
combinations, but all targeted the phosphatase domain of PTEN. Moreover, one of these
three samples did not harbor a BRCA1 mutation despite being designated as BRCA1-type.
This may suggest a dependence for BRCA1-type HRD cancers on PTEN inactivation. In
this respect, Saal et al. [25] showed that PTEN loss is more frequent among basal than
non-basal BC, particularly among BCs from BRCA1 mutation carriers (54.3%, 13.4% and
82.4%, respectively). In fact, loss of PTEN among BCs from BRCA1 mutation carriers
has been associated with gross or structural PTEN mutations rather than PTEN coding
mutations which fits our finding. Furthermore, the authors also suggest a model in which
loss of the second allele of BRCA1 and consequently HRD leads to disruption of PTEN,
which is then clonally selected [25,26]. Since PTEN inactivation has been associated with
HRD and response to PARP inhibitor therapy itself [27–29], an alternative scenario could be
that the HRD phenotype was caused directly by the disruption of PTEN via the TD, at least
in the BRCA1-type sample that was wild-type for BRCA1. In this scenario the TD in PTEN
preceded the HRD phenotype. Peng et al. take this scenario a step further by showing
that PTEN inactivation can rescue BRCA1-driven HRD in MCF-10A cells [29]. However,
the role of PTEN in homologous recombination repair and by extension, a possible role in
PARP inhibitor resistance mechanisms, awaits further validation.

5. Conclusions

We here developed a method to classify BRCA1-type BC with high sensitivity from
RNAseq data by detecting small TDs present in transcripts. Whether or not the TDs
detected via RNAseq are all caused by a TD on the genome, or via aberrant splicing or
other means, these rearranged transcripts are clearly associated with BRCA1-type BC.
Moreover, we show an enrichment of TDs occurring in cancer driver genes, particularly
in the PTEN gene among BRCA1-type BCs. This suggests a role for PTEN inactivation in
the development of BRCA1-type BC that needs to be further investigated. Importantly,
RNAseq opens a new way into identifying patients that may have defective HR repair,
specifically of the BRCA1-type. Such patients may benefit from PARP inhibitor anti-cancer
therapy. Moreover, since BRCA1- and BRCA2-type BCs may utilize different resistance
mechanisms, specifically identifying the different types of HRD defects, rather than HRD
itself, may prove valuable for the clinic. In this respect, extending on our method by
allowing identification of additional HRD defects via RNAseq, such as BRCA2-type HRD
and the defects identified by Hussmann et al., would be worthwhile to pursue [14,30].
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Table S1: Genes affected by TDs in BRCA1-type samples; Table S2: Over-represented pathways
of genes affected by TDs in BRCA1-type samples.
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