408 research outputs found

    Ectoparasites and Other Arthropod Associates of the Hairy-tailed Mole, \u3ci\u3eParascalops Breweri\u3c/i\u3e

    Get PDF
    A total of 33 taxa of ectoparasites and other associates was taken on seven individuals of the Hairy-tailed Mole, Parascalops breweri, from New York and New England. The most abundant form was the glycyphagid mite, Labidophorus nearcticus

    Ectoparasites and Other Arthropod Associates of Some Voles and Shrews From the Catskill Mountains of New York

    Get PDF
    Reported here from the Catskill Mountains of New York are 30 ectoparasites and other associates from 39 smoky shrews, Sorex fumeus, 17 from 11 masked shrews, Sorex cinereus, 11 from eight long-tailed shrews, Sorex dispar, and 31 from 44 rock voles, Microtus chrotorrhinus

    Ionization behavior of the histidine residue in the catalytic triad of serine proteases

    Get PDF
    α-Lytic protease is a homologue of the mammalian serine proteases such as trypsin, chymotrypsin, and elastase, and its single histidine residue belongs to the Asp-His-Ser catalytic triad. This single histidine residue has been selectively enriched in the C-2 carbon with 13C. Magnetic resonance studies of the chemical shift and coupling constant (1Jch) behavior of this nucleus as a function of pH suggest that the imidazole ring is neutral above pH 5 and therefore that the group which is known to ionize with pKa near 6.7 must be the aspartic acid residue. Implications of these new pKa assignments for the catalytic mechanism of serine proteases are discussed and include the absence of any need to separate charge during catalysis. The histidine residue plays two roles. (a) It insulates the aspartic acid from an aqueous environment and accordingly raises its pKa. (b) It serves as a bidentate base to accept a proton from the serine at one of its nitrogens and concertedly transfer a proton from its other nitrogen to the buried carboxylate anion during formation of the tetrahedral intermediate

    The transferome of metabolic genes explored: analysis of the horizontal transfer of enzyme encoding genes in unicellular eukaryotes

    Get PDF
    Metabolic network analysis in multiple eukaryotes identifies how horizontal and endosymbiotic gene transfer of metabolic enzyme-encoding genes leads to functional gene gain during evolution

    Duration channels mediate human time perception

    Get PDF
    The task of deciding how long sensory events seem to last is one that the human nervous system appears to perform rapidly and, for sub-second intervals, seemingly without conscious effort. That these estimates can be performed within and between multiple sensory and motor domains suggest time perception forms one of the core, fundamental processes of our perception of the world around us. Given this significance, the current paucity in our understanding of how this process operates is surprising. One candidate mechanism for duration perception posits that duration may be mediated via a system of duration-selective ‘channels’, which are differentially activated depending on the match between afferent duration information and the channels' ‘preferred’ duration. However, this model awaits experimental validation. In the current study, we use the technique of sensory adaptation, and we present data that are well described by banks of duration channels that are limited in their bandwidth, sensory-specific, and appear to operate at a relatively early stage of visual and auditory sensory processing. Our results suggest that many of the computational principles the nervous system applies to coding visual spatial and auditory spectral information are common to its processing of temporal extent

    Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures

    Full text link
    Epitaxial GaAs grown by molecular beam epitaxy (MBE) at low substrate temperatures is observed to have a significantly shorter carrier lifetime than GaAs grown at normal substrate temperatures. Using femtosecond time‐resolved‐reflectance techniques, a sub‐picosecond (<0.4 ps) carrier lifetime has been measured for GaAs grown by MBE at ∌200°C and annealed at 600 °C. With the same material as a photoconductive switch we have measured electrical pulses with a full‐width at half‐maximum of 0.6 ps using the technique of electro‐optic sampling. Good responsivity for a photoconductive switch is observed, corresponding to a mobility of the photoexcited carriers of ∌120–150 cm2/V s. GaAs grown by MBE at 200 °C and annealed at 600 °C is also semi‐insulating, which results in a low dark current in the switch application. The combination of fast recombination lifetime, high carrier mobility, and high resistivity makes this material ideal for a number of subpicosecond photoconductive applications.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71318/2/APPLAB-59-25-3276-1.pd

    High resistivity and ultrafast carrier lifetime in argon implanted GaAs

    Full text link
    We have investigated the optoelectronic and structural properties of GaAs that has been implanted with Ar ions and subsequently annealed. The material exhibits all the basic optical and electronic characteristics typically observed in nonstoichiometric, As implanted or low‐temperature‐grown GaAs. Annealing of Ar implanted GaAs at 600 °C produces a highly resistive material with a subpicosecond trapping lifetime for photoexcited carriers. Transmission electron microscopy shows that, instead of As precipitates, characteristic for the nonstoichiometeric GaAs, voids ranging in size from 3 to 5 nm are observed in Ar implanted and annealed GaAs. © 1996 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69637/2/APPLAB-69-17-2569-1.pd

    Comprehensive epigenetic landscape of rheumatoid arthritis fibroblast-like synoviocytes.

    Get PDF
    Epigenetics contributes to the pathogenesis of immune-mediated diseases like rheumatoid arthritis (RA). Here we show the first comprehensive epigenomic characterization of RA fibroblast-like synoviocytes (FLS), including histone modifications (H3K27ac, H3K4me1, H3K4me3, H3K36me3, H3K27me3, and H3K9me3), open chromatin, RNA expression and whole-genome DNA methylation. To address complex multidimensional relationship and reveal epigenetic regulation of RA, we perform integrative analyses using a novel unbiased method to identify genomic regions with similar profiles. Epigenomically similar regions exist in RA cells and are associated with active enhancers and promoters and specific transcription factor binding motifs. Differentially marked genes are enriched for immunological and unexpected pathways, with "Huntington's Disease Signaling" identified as particularly prominent. We validate the relevance of this pathway to RA by showing that Huntingtin-interacting protein-1 regulates FLS invasion into matrix. This work establishes a high-resolution epigenomic landscape of RA and demonstrates the potential for integrative analyses to identify unanticipated therapeutic targets
    • 

    corecore