32 research outputs found

    Drosophila Kismet Regulates Histone H3 Lysine 27 Methylation and Early Elongation by RNA Polymerase II

    Get PDF
    Polycomb and trithorax group proteins regulate cellular pluripotency and differentiation by maintaining hereditable states of transcription. Many Polycomb and trithorax group proteins have been implicated in the covalent modification or remodeling of chromatin, but how they interact with each other and the general transcription machinery to regulate transcription is not well understood. The trithorax group protein Kismet-L (KIS-L) is a member of the CHD subfamily of chromatin-remodeling factors that plays a global role in transcription by RNA polymerase II (Pol II). Mutations in CHD7, the human counterpart of kis, are associated with CHARGE syndrome, a developmental disorder affecting multiple tissues and organs. To clarify how KIS-L activates gene expression and counteracts Polycomb group silencing, we characterized defects resulting from the loss of KIS-L function in Drosophila. These studies revealed that KIS-L acts downstream of P-TEFb recruitment to stimulate elongation by Pol II. The presence of two chromodomains in KIS-L suggested that its recruitment or function might be regulated by the methylation of histone H3 lysine 4 by the trithorax group proteins ASH1 and TRX. Although we observed significant overlap between the distributions of KIS-L, ASH1, and TRX on polytene chromosomes, KIS-L did not bind methylated histone tails in vitro, and loss of TRX or ASH1 function did not alter the association of KIS-L with chromatin. By contrast, loss of kis function led to a dramatic reduction in the levels of TRX and ASH1 associated with chromatin and was accompanied by increased histone H3 lysine 27 methylation—a modification required for Polycomb group repression. A similar increase in H3 lysine 27 methylation was observed in ash1 and trx mutant larvae. Our findings suggest that KIS-L promotes early elongation and counteracts Polycomb group repression by recruiting the ASH1 and TRX histone methyltransferases to chromatin

    ISWI Regulates Higher-Order Chromatin Structure and Histone H1 Assembly In Vivo

    Get PDF
    Imitation SWI (ISWI) and other ATP-dependent chromatin-remodeling factors play key roles in transcription and other processes by altering the structure and positioning of nucleosomes. Recent studies have also implicated ISWI in the regulation of higher-order chromatin structure, but its role in this process remains poorly understood. To clarify the role of ISWI in vivo, we examined defects in chromosome structure and gene expression resulting from the loss of Iswi function in Drosophila. Consistent with a broad role in transcriptional regulation, the expression of a large number of genes is altered in Iswi mutant larvae. The expression of a dominant-negative form of ISWI leads to dramatic alterations in higher-order chromatin structure, including the apparent decondensation of both mitotic and polytene chromosomes. The loss of ISWI function does not cause obvious defects in nucleosome assembly, but results in a significant reduction in the level of histone H1 associated with chromatin in vivo. These findings suggest that ISWI plays a global role in chromatin compaction in vivo by promoting the association of the linker histone H1 with chromatin

    Genetic Identification of a Network of Factors that Functionally Interact with the Nucleosome Remodeling ATPase ISWI

    Get PDF
    Nucleosome remodeling and covalent modifications of histones play fundamental roles in chromatin structure and function. However, much remains to be learned about how the action of ATP-dependent chromatin remodeling factors and histone-modifying enzymes is coordinated to modulate chromatin organization and transcription. The evolutionarily conserved ATP-dependent chromatin-remodeling factor ISWI plays essential roles in chromosome organization, DNA replication, and transcription regulation. To gain insight into regulation and mechanism of action of ISWI, we conducted an unbiased genetic screen to identify factors with which it interacts in vivo. We found that ISWI interacts with a network of factors that escaped detection in previous biochemical analyses, including the Sin3A gene. The Sin3A protein and the histone deacetylase Rpd3 are part of a conserved histone deacetylase complex involved in transcriptional repression. ISWI and the Sin3A/Rpd3 complex co-localize at specific chromosome domains. Loss of ISWI activity causes a reduction in the binding of the Sin3A/Rpd3 complex to chromatin. Biochemical analysis showed that the ISWI physically interacts with the histone deacetylase activity of the Sin3A/Rpd3 complex. Consistent with these findings, the acetylation of histone H4 is altered when ISWI activity is perturbed in vivo. These findings suggest that ISWI associates with the Sin3A/Rpd3 complex to support its function in vivo

    The ISWI chromatin-remodeling protein is required for gene expression and the maintenance of higher order chromatin structure in vivo

    No full text
    Drosophila ISWI, a highly conserved member of the SW12/SNF2 family of ATPases, is the catalytic subunit of three chromatin-remodeling complexes: NURF, CHRAC, and ACF. To clarify the biological functions of ISWI, we generated and characterized null and dominant-negative ISWI mutations. We found that ISWI mutations affect both cell viability and gene expression during Drosophila development. ISWI mutations also cause striking alterations in the structure of the male X chromosome. The ISWI protein does not colocalize with RNA Pol II on salivary gland polytene chromosomes, suggesting a possible role for ISWI in transcriptional repression. These findings reveal novel functions for the ISWI ATPase and underscore its importance in chromatin remodeling in vivo

    A Novel Approach for Studying Histone H1 Function in Vivo

    No full text
    In this report, we investigate the mechanisms that regulate Drosophila histone H1 expression and its association with chromatin in vivo. We show that histone H1 is subject to negative autoregulation and exploit this result to examine the effects of mutations of the main phosphorylation site of histone H1
    corecore