2,172 research outputs found

    Molecular Simulations of Ultrafast Radiation Induced Melting at Metal-Semiconductor Interfaces

    Get PDF
    Understanding radiation induced ultrafast melting at material interfaces is essential in designing robust electronic devices for aviation/space applications and in laser machining. While it is difficult to achieve the spatial and temporal resolution required to quantify the phenomenon experimentally, simulations can provide the detailed mechanisms of the structural changes that happen during phase transition. In this work, we use molecular simulations to study the effect of radiation damage on silicon carbide (SiC) - tungsten (W) interfaces which is of interest in high power electronics. A multi-scale approach is involved wherein the reactions at the interfaces are quantified using ab-initio molecular dynamics (MD) simulations and classical MD simulations are employed to understand the structural and diffusional changes across the material interface. Finally, coarse-grained Lennard-Jones type models are used to study the larger scale mechanisms and structures obtained due to the induced damages. We show that the response of the material to radiation damage depends on factors such as energy of the incident radiation, thermal properties, and molecular structure of the material

    Source Galerkin Calculations in Scalar Field Theory

    Get PDF
    In this paper, we extend previous work on scalar ϕ4\phi^4 theory using the Source Galerkin method. This approach is based on finding solutions Z[J]Z[J] to the lattice functional equations for field theories in the presence of an external source JJ. Using polynomial expansions for the generating functional ZZ, we calculate propagators and mass-gaps for a number of systems. These calculations are straightforward to perform and are executed rapidly compared to Monte Carlo. The bulk of the computation involves a single matrix inversion. The use of polynomial expansions illustrates in a clear and simple way the ideas of the Source Galerkin method. But at the same time, this choice has serious limitations. Even after exploiting symmetries, the size of calculations become prohibitive except for small systems. The calculations in this paper were made on a workstation of modest power using a fourth order polynomial expansion for lattices of size 828^2,434^3,242^4 in 2D2D, 3D3D, and 4D4D. In addition, we present an alternative to the Galerkin procedure that results in sparse matrices to invert.Comment: 31 pages, latex, figures separat

    New Numerical Method for Fermion Field Theory

    Get PDF
    A new deterministic, numerical method to solve fermion field theories is presented. This approach is based on finding solutions Z[J]Z[J] to the lattice functional equations for field theories in the presence of an external source JJ. Using Grassmann polynomial expansions for the generating functional ZZ, we calculate propagators for systems of interacting fermions. These calculations are straightforward to perform and are executed rapidly compared to Monte Carlo. The bulk of the computation involves a single matrix inversion. Because it is not based on a statistical technique, it does not have many of the difficulties often encountered when simulating fermions. Since no determinant is ever calculated, solutions to problems with dynamical fermions are handled more easily. This approach is very flexible, and can be taylored to specific problems based on convenience and computational constraints. We present simple examples to illustrate the method; more general schemes are desirable for more complicated systems.Comment: 24 pages, latex, figures separat

    Wind Design of Timber Panelized Roof Structures

    Get PDF

    Modeling Materials: Design for Planetary Entry, Electric Aircraft, and Beyond

    Get PDF
    NASA missions push the limits of what is possible. The development of high-performance materials must keep pace with the agency's demanding, cutting-edge applications. Researchers at NASA's Ames Research Center are performing multiscale computational modeling to accelerate development times and further the design of next-generation aerospace materials. Multiscale modeling combines several computationally intensive techniques ranging from the atomic level to the macroscale, passing output from one level as input to the next level. These methods are applicable to a wide variety of materials systems. For example: (a) Ultra-high-temperature ceramics for hypersonic aircraft-we utilized the full range of multiscale modeling to characterize thermal protection materials for faster, safer air- and spacecraft, (b) Planetary entry heat shields for space vehicles-we computed thermal and mechanical properties of ablative composites by combining several methods, from atomistic simulations to macroscale computations, (c) Advanced batteries for electric aircraft-we performed large-scale molecular dynamics simulations of advanced electrolytes for ultra-high-energy capacity batteries to enable long-distance electric aircraft service; and (d) Shape-memory alloys for high-efficiency aircraft-we used high-fidelity electronic structure calculations to determine phase diagrams in shape-memory transformations. Advances in high-performance computing have been critical to the development of multiscale materials modeling. We used nearly one million processor hours on NASA's Pleiades supercomputer to characterize electrolytes with a fidelity that would be otherwise impossible. For this and other projects, Pleiades enables us to push the physics and accuracy of our calculations to new levels

    Computational and Experimental Study of Li-doped Ionic Liquids at Electrified Interfaces

    Get PDF
    We evaluate the influence of Li-salt doping on the dynamics, capacitance, and structure of three ionic liquid electrolytes, [pyr14][TFSI], [pyr13][FSI], and [EMIM][BF4], using molecular dynamics and polarizable force fields. In this respect, our focus is on the properties of the electric double layer (EDL) formed by the electrolytes at the electrode surface as a function of surface potential (Psi). The rates of EDL formation are found to be on the order of hundreds of picoseconds and only slightly influenced by the addition of Li-salt. The EDLs of three electrolytes are shown to have different energy storage capacities, which we relate to the EDL formation free energy. The differential capacitance obtained from our computations exhibits asymmetry about the potential of zero charge and is consistent with the camel-like profiles noted from mean field theories and experiments on metallic electrodes. The introduction of Li-salt reduces the noted asymmetry in the differential capacitance profile. Complementary experimental capacitance measurements have been made on our three electrolytes in their neat forms and with Li-salt. The measurements, performed on glassy carbon electrodes, produce U-like profiles, and Li-salt doping is shown to strongly affect capacitance at high magnitudes of Psi. Differences in the theoretical and experimental shapes and magnitudes of capacitance are rationalized in terms of the electrode surface and pseudocapacitive effects. In both neat and Li-doped liquids, the details of the computational capacitance profile are well described by Psi-induced changes in the density and molecular orientation of ions in the molecular layer closest to the electrode. Our results suggest that the addition of Li+ induces disorder in the EDL, which originates from the strong binding of anions to Li+. An in-depth analysis of the distribution of Li+ in the EDL reveals that it does not readily enter the molecular layer at the electrode surface, preferring instead to be localized farther away from the surface in the second molecular layer. This behavior is validated through an analysis of the free energy of Li+ solvation as a function of distance from the electrode. Free energy wells are found to coincide with localized concentrations of Li+, the depths of which increase with Psi and suggest a source of impedance for Li+ to reach the electrode

    Li-Doped Ionic Liquid Electrolytes: From Bulk Phase to Interfacial Behavior

    Get PDF
    Ionic liquids have been proposed as candidate electrolytes for high-energy density, rechargeable batteries. We present an extensive computational analysis supported by experimental comparisons of the bulk and interfacial properties of a representative set of these electrolytes as a function of Li-salt doping. We begin by investigating the bulk electrolyte using quantum chemistry and ab initio molecular dynamics to elucidate the solvation structure of Li(+). MD simulations using the polarizable force field of Borodin and coworkers were then performed, from which we obtain an array of thermodynamic and transport properties. Excellent agreement is found with experiments for diffusion, ionic conductivity, and viscosity. Combining MD simulations with electronic structure computations, we computed the electrochemical window of the electrolytes across a range of Li(+)-doping levels and comment on the role of the liquid environment. Finally, we performed a suite of simulations of these Li-doped electrolytes at ideal electrified interfaces to evaluate the differential capacitance and the equilibrium Li(+) distribution in the double layer. The magnitude of differential capacitance is in good agreement with our experiments and exhibits the characteristic camel-shaped profile. In addition, the simulations reveal Li(+) to be highly localized to the second molecular layer of the double layer, which is supported by additional computations that find this layer to be a free energy minimum with respect to Li(+) translation
    corecore