70 research outputs found

    Characterization of oil sands naphthenic acids by negative-ion electrospray ionization mass spectrometry : influence of acidic versus basic transfer solvent

    Get PDF
    Considerable effort and progress has been made over the past decade with respect to development of analytical tools for the determination of naphthenic acids and related components in environmental samples. However, experimental variables that influence the analytical results have not been fully explored. The relative contributions of Ox classes are of particular interest in data obtained using negative-ion electrospray ionization mass spectrometry. Using two types of ultrahigh resolution mass spectrometers (Orbitrap and FT-ICR), the apparent pH of the transfer solvent was observed to have a significant impact upon compound class distributions. A basic transfer solvent favored the detection of Ox species of lower oxygen content, while acidic pH favored the preferential observation of organic compounds with higher oxygen contents. These observed trends were independent of the instrument type. In addition, when using an acidic transfer solvent, the overall observed response was reduced by a factor of ∼20. Thus, the apparent pH of the transfer solvent has critical influence upon detection and upon the profile of different components observed within a complex mixture. In turn, this significantly impacts oil sands environmental monitoring for toxicity, forensic interpretation, and quantitation; when comparing data sets from different laboratories, these findings should therefore be taken into account

    Water quality monitoring in the former Soviet Union and the Russian Federation : Assessment of analytical methods

    Get PDF
    Monitoring of surface water quality in the former Soviet Union (FSU) and the present-day Russian Federation historically held an important place in the hierarchy of science, legal framework and relations between agencies. Sadly, the gap between the intentions, qualification of managers and effective programmes has always been sizeable. Since disintegration of the FSU this gap has become a formidable barrier for collecting reliable monitoring information and producing effective water quality management decisions in the Russian Federation. Updating the federal system for freshwater quality monitoring in the Russian Federation is complicated by several unresolved problems. The principal issues are political, technical, institutional and financial. The existing Russian model of water chemistry data collection inherited from the FSU has proved unreliable, outdated and unrelated to modern national issues of water management. The quality of produced data is one of the greatest weaknesses of the federal monitoring system both in the Russian Federation and in other states of the FSU. A significant cause of the low reliability of the produced information is the analytical methods used in monitoring, their inappropriate use, non-compliance to laboratory practices when following expert recommendations, insufficient training level of managers and laboratory personnel and under-funding of the federal monitoring system. The growing national priorities in the field of surface water quality control and improvement conflict with the capacity of the Russian Federation to provide necessary information of guaranteed high quality. Here we make the first attempt to present a critical analysis of the analytical methods used to assess and control surface water quality, to show the main errors arising when applying the recommended analytical methods, and to assess the degree of reliability of produced monitoring information from 1977-1978 and to the present. Our overall objective is to summarize the current situation in order to facilitate implementation of future improvements

    Petroleomic analysis of the treatment of naphthenic organics in oil sands process-affected water with buoyant photocatalysts

    Get PDF
    The final publication is available at Elsevier via https://dx.doi.org/10.1016/j.watres.2018.05.011 © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/The persistence of toxicity associated with the soluble naphthenic organic compounds (NOCs) of oil sands process-affected water (OSPW) implies that a treatment solution may be necessary to enable safe return of this water to the environment. Due to recent advances in high-resolution mass spectrometry (HRMS), the majority of the toxicity of OSPW is currently understood to derive from a subset of toxic classes, comprising only a minority of the total NOCs. Herein, oxidative treatment of OSPW with buoyant photocatalysts was evaluated under a petroleomics paradigm: chemical changes across acid-, base- and neutral-extractable organic fractions were tracked throughout the treatment with both positive and negative ion mode electrospray ionization (ESI) Orbitrap MS. Elimination of detected OS+ and NO+ classes of concern in the earliest stages of the treatment, along with preferential degradation of high carbon-numbered O2− acids, suggest that photocatalysis may detoxify OSPW with higher efficiency than previously thought. Application of petroleomic level analysis offers unprecedented insights into the treatment of petroleum impacted water, allowing reaction trends to be followed across multiple fractions and thousands of compounds simultaneously.Natural Sciences and Engineering Research Council of CanadaNSERC Vanier Canada Graduate ScholarshipOntario Graduate Scholarshi

    Solubilized Chitosan Biopolymers for Sequestration of Organic Acids in Aquatic Environments after Biodegradation in a Constructed Wetland Treatment System

    Get PDF
    Pristine chitosan was dissolved in two different respective aqueous acids, namely acetic acid (AcA) and hydrochloric acid (HCl). The respective acid solutions were used as media to associate with naphthenic acid fraction compounds (NAFCs) from raw oil sands process water (R-OSPW) contaminants and constructed treatment wetland systems OSPW (CWTS-OSPW) samples. The results revealed selective removal of NAFCs and lyotropic effects due to variable counterion binding of chloride versus acetate with the ionized NAFCs (carboxylate species)

    Advances in Distinguishing Groundwater Influenced by Oil Sands Process-Affected Water (OSPW) from Natural Bitumen-Influenced Groundwater

    Get PDF
    The objective of this study was to advance analytical methods for detecting oil sands process-affected water (OSPW) seepage from mining containments and discriminating any such seepage from the natural bitumen background in groundwaters influenced by the Alberta McMurray formation. Improved sampling methods and quantitative analyses of two groups of monoaromatic acids were employed to analyze OSPW and bitumen-affected natural background groundwaters for source discrimination. Both groups of monoaromatic acids showed significant enrichment in OSPW, while ratios of O /O containing heteroatomic ion classes of acid extractable organics (AEOs) did not exhibit diagnostic differences. Evaluating the monoaromatic acids to track a known plume of OSPW-affected groundwater confirmed their diagnostic abilities. A secondary objective was to assess anthropogenically derived artificial sweeteners and per- and polyfluoroalkyl substances (PFAS) as potential tracers for OSPW. Despite the discovery of acesulfame and PFAS in most OSPW samples, trace levels in groundwaters influenced by general anthropogenic activities preclude them as individual robust tracers. However, their inclusion with the other metrics employed in this study served to augment the tiered, weight of evidence methodology developed. This methodology was then used to confirm earlier findings of OSPW migrations into groundwater reaching the Athabasca River system adjacent to the reclaimed pond at Tar Island Dyke

    Preparative isolation, fractionation and chemical characterization of dissolved organics from natural and industrially derived bitumen-influenced groundwaters from the Athabasca River watershed

    Get PDF
    Recent analytical advances have provided evidence that groundwater affected by oil sands process-affected water (OSPW) is reaching the Athabasca River at one location. To understand and discriminate the toxicological risks posed by OSPW-influenced groundwater relative to groundwaters associated with natural oil sands deposits, these highly complex mixtures of soluble organics were subjected to toxicological characterization through effects directed analysis. A recently-developed preparative fractionation methodology was applied to bitumen-influenced groundwaters and successfully isolated dissolved organics from both industrial and natural sources into three chemically distinct fractions (F1, F2, F3), enabling multiple toxicological assessments. Analytical techniques included electrospray ionization high resolution mass spectrometry (ESI-HRMS), liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QToF/MS), gas chromatography mass spectrometry (GC–MS), and synchronous fluorescence spectroscopy (SFS) methods, which did not reveal obvious differences between sources. Comparisons between fractions within each source consistently demonstrated that F3 contained compounds with greater polarity than F2, which in turn was more polar than F1. The abundance of O2 species was confined to F1, including naphthenic acids often cited for being the primary toxicants within bitumen-influenced waters. This result is consistent with earlier work on aged OSPW, as well as with other extraction methods, suggesting that additional factors other than molecular weight and the presence of acid functionalities play a prominent role in defining compound polarities and toxicities within complex bitumen-derived organic mixtures. The similarities in organic abundances, chemical speciation, aromaticity, and double bond equivalents, concomitant with inorganic mixture similarities, demonstrate the resemblances of bitumen-influenced groundwaters regardless of the source, and reinforce the need for more advanced targeted analyses for source differentiation.This work was funded under the Oil Sands Monitoring Program, and is a contribution to the Program, but does not necessarily reflect the position of the Program. Internal resources from Environment and Climate Change Canada were also used to fund this research

    Transcriptomic analysis of the temporal host response to skin infestation with the ectoparasitic mite Psoroptes ovis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Infestation of ovine skin with the ectoparasitic mite <it>Psoroptes ovis </it>results in a rapid cutaneous immune response, leading to the crusted skin lesions characteristic of sheep scab. Little is known regarding the mechanisms by which such a profound inflammatory response is instigated and to identify novel vaccine and drug targets a better understanding of the host-parasite relationship is essential. The main objective of this study was to perform a combined network and pathway analysis of the <it>in vivo </it>skin response to infestation with <it>P. ovis </it>to gain a clearer understanding of the mechanisms and signalling pathways involved.</p> <p>Results</p> <p>Infestation with <it>P. </it>ovis resulted in differential expression of 1,552 genes over a 24 hour time course. Clustering by peak gene expression enabled classification of genes into temporally related groupings. Network and pathway analysis of clusters identified key signalling pathways involved in the host response to infestation. The analysis implicated a number of genes with roles in allergy and inflammation, including pro-inflammatory cytokines (<it>IL1A, IL1B, IL6, IL8 </it>and <it>TNF</it>) and factors involved in immune cell activation and recruitment (<it>SELE, SELL, SELP, ICAM1, CSF2, CSF3, CCL2 </it>and <it>CXCL2</it>). The analysis also highlighted the influence of the transcription factors NF-kB and AP-1 in the early pro-inflammatory response, and demonstrated a bias towards a Th2 type immune response.</p> <p>Conclusions</p> <p>This study has provided novel insights into the signalling mechanisms leading to the development of a pro-inflammatory response in sheep scab, whilst providing crucial information regarding the nature of mite factors that may trigger this response. It has enabled the elucidation of the temporal patterns by which the immune system is regulated following exposure to <it>P. ovis</it>, providing novel insights into the mechanisms underlying lesion development. This study has improved our existing knowledge of the host response to <it>P. ovis</it>, including the identification of key parallels between sheep scab and other inflammatory skin disorders and the identification of potential targets for disease control.</p

    Seasonal Changes in Fungal Production and Biomass on Standing Dead Scirpus lacustris Litter in a Northern Prairie Wetland

    No full text
    Decaying macrophytes are an important source of carbon and nutrients in fungal and bacterial communities of northern prairie wetlands. Dead macrophytes do not collapse into the water column immediately after death, and decomposition by fungi and bacteria begins while the plants are standing. The seasonal variations in fungal biomass and production on Scirpus lacustris stems, both above and below water, were measured to assess which environmental factors were dominant in affecting these variations in a typical prairie wetland. Fungal biomass and production were measured from early May to November, just prior to freeze-up. Fungal decomposition began and was greatest in the spring despite low water temperatures. The fungal production, as measured by the incorporation of [1-(14)C]acetate into ergosterol, ranged from 1.8 to 376 μg of C g of ash-free dry mass (AFDM)(−1) day(−1), and the biomass, as estimated by using ergosterol, ranged from nondetectable to 5.8 mg of C g of AFDM(−1). There was no significant difference in biomass or production between aerial and submerged portions of Scirpus stems. The water temperature was correlated with fungal production (r = 0.7, P < 0.005) for aerial stem pieces but not for submerged pieces. However, in laboratory experiments water temperature had a measurable effect on both biomass and production in submerged stem pieces. Changes in fungal biomass and productivity on freshly cut green Scirpus stems decaying in the water either exposed to natural solar radiation or protected from UV radiation were monitored over the summer. There was no significant difference in either fungal biomass (P = 0.76) or production (P = 0.96) between the two light treatments. The fungal biomass and rates of production were within the lower range of the values reported elsewhere, probably as a result of the colder climate and perhaps the lower lability of Scirpus stems compared to the labilities of the leaves and different macrophytes examined in other studies performed at lower latitudes

    “Pillaring Effects” in Cross-Linked Cellulose Biopolymers: A Study of Structure and Properties

    No full text
    Modified cellulose materials (CLE-4, CLE-1, and CLE-0.5) were prepared by cross-linking with epichlorohydrin (EP), where the products display variable structure, morphology, and thermal stability. Adsorptive probes such as nitrogen gas and phenolic dyes in aqueous solution reveal that cross-linked cellulose has greater accessible surface area (SA) than native cellulose. The results also reveal that the SA of cross-linked cellulose increased with greater EP content, except for CLE-0.5. The attenuation of SA for CLE-0.5 may relate to surface grafting onto cellulose beyond the stoichiometric cellulose and EP ratio since ca. 30% of the hydroxyl groups of cellulose are accessible for cross-linking reaction due to its tertiary fibril nature. Scanning electron microscopy (SEM) results reveal the variable surface roughness and fibre domains of cellulose due to cross-linking. X-ray diffraction (XRD) and 13C NMR spectroscopy indicate that cellulose adopts a one-chain triclinic unit cell structure (P1 space group) with gauche-trans (gt) and trans-gauche (tg) conformations of the glucosyl linkages and hydroxymethyl groups. The structural characterization results reveal that cross-linking of cellulose occurs at the amorphous domains. By contrast, the crystalline domains are preserved according to similar features in the XRD, FTIR, and 13C NMR spectra of cellulose and its cross-linked forms. This study contributes to an improved understanding of the role of cross-linking of native cellulose in its structure and functional properties. Cross-linked cellulose has variable surface functionality, structure, and textural properties that contribute significantly to their unique physicochemical properties over its native form
    corecore