10 research outputs found

    Information Spreading in Interacting String Field Theory

    Full text link
    The commutator of string fields is considered in the context of light cone string field theory. It is shown that the commutator is in general non--vanishing outside the string light cone. This could have profound implications for our understanding of the localization of information in quantum gravity.Comment: 10 pages, 1 figure, harvmac and epsf, UCSBTH-94-07, SU-ITP-94-

    String Physics and Black Holes

    Get PDF
    In these lectures we review the quantum physics of large Schwarzschild black holes. Hawking's information paradox, the theory of the stretched horizon and the principle of black hole complementarity are covered. We then discuss how the ideas of black hole complementarity may be realized in string theory. Finally, arguments are given that the world may be a hologram. Lectures delivered at ICTP Spring School on String Theory, Gauge Theory, and Quantum Gravity, 1995.Comment: 20 pages, Latex (needs espcrc2.sty), 6 figure

    Black Hole Complementarity vs. Locality

    Full text link
    The evaporation of a large mass black hole can be described throughout most of its lifetime by a low-energy effective theory defined on a suitably chosen set of smooth spacelike hypersurfaces. The conventional argument for information loss rests on the assumption that the effective theory is a local quantum field theory. We present evidence that this assumption fails in the context of string theory. The commutator of operators in light-front string theory, corresponding to certain low-energy observers on opposite sides of the event horizon, remains large even when these observers are spacelike separated by a macroscopic distance. This suggests that degrees of freedom inside a black hole should not be viewed as independent from those outside the event horizon. These nonlocal effects are only significant under extreme kinematic circumstances, such as in the high-redshift geometry of a black hole. Commutators of space-like separated operators corresponding to ordinary low-energy observers in Minkowski space are strongly suppressed in string theory.Comment: 32 pages, harvmac, 3 figure

    The Stretched Horizon and Black Hole Complementarity

    Full text link
    Three postulates asserting the validity of conventional quantum theory, semi-classical general relativity and the statistical basis for thermodynamics are introduced as a foundation for the study of black hole evolution. We explain how these postulates may be implemented in a ``stretched horizon'' or membrane description of the black hole, appropriate to a distant observer. The technical analysis is illustrated in the simplified context of 1+1 dimensional dilaton gravity. Our postulates imply that the dissipative properties of the stretched horizon arise from a course graining of microphysical degrees of freedom that the horizon must possess. A principle of black hole complementarity is advocated. The overall viewpoint is similar to that pioneered by 't~Hooft but the detailed implementation is different.Comment: (some misprints in equations have been fixed), 48 pages (including figures), SU-ITP-93-1
    corecore