228 research outputs found

    The TRENDS High-Contrast Imaging Survey. V. Discovery of an Old and Cold Benchmark T-dwarf Orbiting the Nearby G-star HD 19467

    Get PDF
    The nearby Sun-like star HD 19467 shows a subtle radial velocity (RV) acceleration of -1.37+/-0.09 m/s/yr over an 16.9 year time baseline (an RV trend), hinting at the existence of a distant orbiting companion. We have obtained high-contrast adaptive optics images of the star using NIRC2 at Keck Observatory and report the direct detection of the body that causes the acceleration. The companion, HD 19467 B, is dK=12.57+/-0.09 mag fainter than its parent star (contrast ratio of 9.4e-6), has blue colors J-K_s=-0.36+/-0.14 (J-H=-0.29+/-0.15), and is separated by 1.653+/-0.004" (51.1+/-1.0 AU). Follow-up astrometric measurements obtained over an 1.1 year time baseline demonstrate physical association through common parallactic and proper motion. We calculate a firm lower-limit of m>51.9^{+3.6}_{-4.3}Mjup for the companion mass from orbital dynamics using a combination of Doppler observations and imaging. We estimate a model-dependent mass of m=56.7^{+4.6}_{-7.2}Mjup from a gyrochronological age of 4.3^{+1.0}_{-1.2} Gyr. Isochronal analysis suggests a much older age of 9±19\pm1 Gyr, which corresponds to a mass of m=67.4^{+0.9}_{-1.5}Mjup. HD 19467 B's measured colors and absolute magnitude are consistent with a late T-dwarf [~T5-T7]. We may infer a low metallicity of [Fe/H]=-0.15+/-0.04 for the companion from its G3V parent star. HD 19467 B is the first directly imaged benchmark T-dwarf found orbiting a Sun-like star with a measured RV acceleration.Comment: Updated to reflect ApJ versio

    Fourteen New Companions from the Keck & Lick Radial Velocity Survey Including Five Brown Dwarf Candidates

    Get PDF
    We present radial velocities for 14 stars on the California & Carnegie Planet Search target list that reveal new companions. One star, HD 167665, was fit with a definitive Keplerian orbit leading to a minimum mass for the companion of 50.3 Mjup at a separation from its host of ~5.5 AU. Incomplete or limited phase coverage for the remaining 13 stars prevents us from assigning to them unique orbital parameters. Instead, we fit their radial velocities with Keplerian orbits across a grid of fixed values for Msini and period, P, and use the resulting reduced chi-square surface to place constraints on Msini, P, and semimajor axis, a. This technique allowed us to restrict Msini below the brown dwarf -- stellar mass boundary for an additional 4 companions (HD 150554, HD 8765, HD 72780, HD 74014). If the combined 5 companions are confirmed as brown dwarfs, these results would comprise the first major catch of such objects from our survey beyond ~3 AU.Comment: 29 pages, 14 figures, accepted to Ap

    Two Exoplanets Discovered at Keck Observatory

    Get PDF
    We present two exoplanets detected at Keck Observatory. HD 179079 is a G5 subgiant that hosts a hot Neptune planet with Msini = 27.5 M_earth in a 14.48 d, low-eccentricity orbit. The stellar reflex velocity induced by this planet has a semiamplitude of K = 6.6 m/s. HD 73534 is a G5 subgiant with a Jupiter-like planet of Msini = 1.1 M_jup and K = 16 m/s in a nearly circular 4.85 yr orbit. Both stars are chromospherically inactive and metal-rich. We discuss a known, classical bias in measuring eccentricities for orbits with velocity semiamplitudes, K, comparable to the radial velocity uncertainties. For exoplanets with periods longer than 10 days, the observed exoplanet eccentricity distribution is nearly flat for large amplitude systems (K > 80 m/s), but rises linearly toward low eccentricity for lower amplitude systems (K > 20 m/s).Comment: 8 figures, 6 tables, accepted, Ap

    Retired A Stars and Their Companions IV. Seven Jovian Exoplanets from Keck Observatory

    Get PDF
    We report precise Doppler measurements of seven subgiants from Keck Observatory. All seven stars show variability in their radial velocities consistent with planet-mass companions in Keplerian orbits. The host stars have masses ranging from 1.1 < Mstar/Msun < 1.9, radii 3.4 < Rstar/Rsun < 6.1, and metallicities -0.21 < [Fe/H] < +0.26. The planets are all more massive than Jupiter (Msini > 1 Mjup) and have semimajor axes > 1 AU. We present millimagnitude photometry from the T3 0.4m APT at Fairborn observatory for five of the targets. Our monitoring shows these stars to be photometrically stable, further strengthening the interpretation of the observed radial velocity variability. The orbital characteristics of the planets thus far discovered around former A-type stars are very different from the properties of planets around dwarf stars of spectral type F, G and K, and suggests that the formation and migration of planets is a sensitive function of stellar mass. Three of the planetary systems show evidence of long-term, linear trends indicative of additional distant companions. These trends, together with the high planet masses and increased occurrence rate, indicate that A-type stars are very promising targets for direct imaging surveys.Comment: PASP Accepted, final submission awaiting comments from the communit

    Five planets and an independent confirmation of HD 196885Ab from Lick Observatory

    Get PDF
    We present time series Doppler data from Lick Observatory that reveal the presence of long-period planetary companions orbiting nearby stars. The typical eccentricity of these massive planets are greater than the mean eccentricity of known exoplanets. HD30562b has Msini = 1.29 Mjup, with semi-major axis of 2.3 AU and eccentricity 0.76. The host star has a spectral type F8V and is metal rich. HD86264b has Msini = 7.0 Mjup, arel = 2.86 AU, an eccentricity, e = 0.7 and orbits a metal-rich, F7V star. HD87883b has Msini = 1.78 Mjup, arel = 3.6 AU, e = 0.53 and orbits a metal-rich K0V star. HD89307b has Msini = 1.78 Mjup, arel = 3.3 AU, e = 0.24 and orbits a G0V star with slightly subsolar metallicity. HD148427b has Msini = 0.96 Mjup, arel = 0.93 AU, eccentricity of 0.16 and orbits a metal rich K0 subgiant. We also present velocities for a planet orbiting the F8V metal-rich binary star, HD196885A. The planet has Msini = 2.58 Mjup, arel = 2.37 AU, and orbital eccentricity of 0.48, in agreement with the independent discovery by Correia et al. 2008.Comment: 12 figures, 8 tables, accepted Ap

    A High Eccentricity Component in the Double Planet System Around HD 163607 and a Planet Around HD 164509

    Get PDF
    We report the detection of three new exoplanets from Keck Observatory. HD 163607 is a metal-rich G5IV star with two planets. The inner planet has an observed orbital period of 75.29 ±\pm 0.02 days, a semi-amplitude of 51.1 ±\pm 1.4 \ms, an eccentricity of 0.73 ±\pm 0.02 and a derived minimum mass of \msini = 0.77 ±\pm 0.02 \mjup. This is the largest eccentricity of any known planet in a multi-planet system. The argument of periastron passage is 78.7 ±\pm 2.0^{\circ}; consequently, the planet's closest approach to its parent star is very near the line of sight, leading to a relatively high transit probability of 8%. The outer planet has an orbital period of 3.60 ±\pm 0.02 years, an orbital eccentricity of 0.12 ±\pm 0.06 and a semi-amplitude of 40.4 ±\pm 1.3 \ms. The minimum mass is \msini = 2.29 ±\pm 0.16 \mjup. HD 164509 is a metal-rich G5V star with a planet in an orbital period of 282.4 ±\pm 3.8 days and an eccentricity of 0.26 ±\pm 0.14. The semi-amplitude of 14.2 ±\pm 2.7 \ms\ implies a minimum mass of 0.48 ±\pm 0.09 \mjup. The radial velocities of HD 164509 also exhibit a residual linear trend of -5.1 ±\pm 0.7 \ms\ per year, indicating the presence of an additional longer period companion in the system. Photometric observations demonstrate that HD 163607 and HD 164509 are constant in brightness to sub-millimag levels on their radial velocity periods. This provides strong support for planetary reflex motion as the cause of the radial velocity variations.Comment: 10 pages, 8 figures, accepted to Ap

    The California Planet Survey II. A Saturn-Mass Planet Orbiting the M Dwarf Gl649

    Get PDF
    We report precise Doppler measurements of the nearby (d = 10.34 pc) M dwarf Gl649 that reveal the presence of a planet with a minimum mass Msini = 0.328 Mjup in an eccentric (e = 0.30), 598.3 day orbit. Our photometric monitoring reveals Gl649 to be a new variable star with brightness changes on both rotational and decadal timescales. However, neither of these timescales are consistent with the 600-day Doppler signal and so provide strong support for planetary reflex motion as the best interpretation of the observed radial velocity variations. Gl649b is only the seventh Doppler-detected giant planet around an M dwarf. The properties of the planet and host-star therefore contribute significant information to our knowledge of planet formation around low-mass stars. We revise and refine the occurrence rate of giant planets around M dwarfs based on the California Planet Survey sample of low-mass stars (M* < 0.6 Msun). We find that f = 3.4^{+2.2}_{-0.9}% of stars with M* < 0.6 Msun harbor planets with Msini > 0.3$ Mjup and a < 2.5 AU. When we restrict our analysis to metal-rich stars with [Fe/H] > +0.2 we find the occurrence rate is 10.7^{+5.9}_{-4.2}%.Comment: 8 pages, 4 figures, 3 tables, PASP accepte

    The Dynamical Mass and Three-Dimensional Orbit of HR7672B: A Benchmark Brown Dwarf with High Eccentricity

    Get PDF
    The companion to the G0V star HR7672 directly imaged by Liu et al. (2002) has moved measurably along its orbit since the discovery epoch, making it possible to determine its dynamical properties. Originally targeted with adaptive optics because it showed a long-term radial velocity acceleration (trend), we have monitored this star with precise Doppler measurements and have now established a 24 year time baseline. The radial velocity variations show significant curvature (change in the acceleration) including an inflection point. We have also obtained a recent image of HR7672B with NIRC2 at Keck. The astrometry also shows curvature. In this paper, we use jointly-fitted Doppler and astrometric models to calculate the three-dimensional orbit and dynamical mass of the companion. The mass of the host star is determined using a direct radius measurement from CHARA interferometry in combination with high resolution spectroscopic modeling. We find that HR7672B has a highly eccentric, e=0.500.01+0.01e=0.50^{+0.01}_{-0.01}, near edge-on, i=97.30.5+0.4i=97.3^{+0.4}_{-0.5} deg, orbit with semimajor axis, a=18.30.5+0.4a=18.3^{+0.4}_{-0.5} AU. The mass of the companion is m=68.73.1+2.4MJm=68.7^{+2.4}_{-3.1}M_J at the 68.2% confidence level. HR7672B thus resides near the substellar boundary, just below the hydrogen-fusing limit. These measurements of the companion mass are independent of its brightness and spectrum and establish HR7672B as a rare and precious "benchmark" brown dwarf with a well-determined mass, age, and metallicity essential for testing theoretical evolutionary models and synthetic spectral models. It is presently the only directly imaged L,T,Y-dwarf known to produce an RV trend around a solar-type star.Comment: accepted to Ap

    The TRENDS High-contrast Imaging Survey. IV. The Occurrence Rate of Giant Planets around M Dwarfs

    Get PDF
    Doppler-based planet surveys have discovered numerous giant planets but are incomplete beyond several AU. At larger star–planet separations, direct planet detection through high-contrast imaging has proven successful, but this technique is sensitive only to young planets and characterization relies upon theoretical evolution models. Here we demonstrate that radial velocity measurements and high-contrast imaging can be combined to overcome these issues. The presence of widely separated companions can be deduced by identifying an acceleration (long-term trend) in the radial velocity of a star. By obtaining high spatial resolution follow-up imaging observations, we rule out scenarios in which such accelerations are caused by stellar binary companions with high statistical confidence. We report results from an analysis of Doppler measurements of a sample of 111 M-dwarf stars with a median of 29 radial velocity observations over a median time baseline of 11.8 yr. By targeting stars that exhibit a radial velocity acceleration ("trend") with adaptive optics imaging, we determine that 6.5% ± 3.0% of M-dwarf stars host one or more massive companions with 1 < m/M_J < 13 and 0 < a < 20 AU. These results are lower than analyses of the planet occurrence rate around higher-mass stars. We find the giant planet occurrence rate is described by a double power law in stellar mass M and metallicity F ≡ [Fe/H] such that f(M, F) = 0.039^+0.056)_(-0.028)M^(0.8)^(+1.1)_(-0.9) 10^(3.8±1.2). Our results are consistent with gravitational microlensing measurements of the planet occurrence rate; this study represents the first model-independent comparison with microlensing observations

    Retired A Stars and Their Companions: Exoplanets Orbiting Three Intermediate-Mass Subgiants

    Get PDF
    We report precision Doppler measurements of three intermediate-mass subgiants from Lick and Keck Observatories. All three stars show variability in their radial velocities consistent with planet-mass companions in Keplerian orbits. We find a planet with a minimum mass of 2.5 Mjup in a 351.5 day orbit around HD 192699, a planet with a minimum mass of 2.0 Mjup in a 341.1 day orbit around HD 210702, and a planet with a minimum mass of 0.61 Mjup in a 297.3 day orbit around HD 175541. Stellar mass estimates from evolutionary models indicate that all of these stars were formerly A-type dwarfs with masses ranging from 1.65 to 1.85 Msun. These three long-period planets would not have been detectable during their stars' main-sequence phases due to the large rotational velocities and stellar jitter exhibited by early-type dwarfs. There are now 9 "retired" (evolved) A-type stars (Mstar > 1.6 Msun) with known planets. All 9 planets orbit at distances a \geq 0.78 AU, which is significantly different than the semimajor axis distribution of planets around lower-mass stars. We examine the possibility that the observed lack of close-in planets is due to engulfment by their expanding host stars, but we find that this explanation is inadequate given the relatively small stellar radii of K giants (Rstar < 32 Rsun = 0.15 AU) and subgiants (Rstar < 7 Rsun = 0.03 AU). Instead, we conclude that planets around intermediate-mass stars reside preferentially beyond ~0.8 AU, which may be a reflection of different formation and migration histories of planets around A-type stars.Comment: 31 pages, 9 figures, 6 tables, ApJ accepted, corrected minor typo
    corecore