4,185 research outputs found

    Wing flutter calculations with the CAP-TSD unsteady transonic small disturbance program

    Get PDF
    The application and assessment is described of CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code for flutter prediction. The CAP-TSD program was developed for aeroelastic analysis of complete aircraft configurations and was previously applied to the calculation of steady and unsteady pressures. Flutter calculations are presented for two thin, swept-and-tapered wing planforms with well defined modal properties. The calculations are for Mach numbers from low subsonic to low supersonic values, including the transonic range, and are compared with subsonic linear theory and experimental flutter data. The CAP-TSD flutter results are generally in good agreement with the experimental values and are in good agreement with subsonic linear theory when wing thickness is neglected

    Steady and unsteady transonic small disturbance analysis of realistic aircraft configurations

    Get PDF
    A transonic unsteady aerodynamic and aeroelastic code called CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) was developed for application to realistic aircraft configurations. It permits the calculation of steady and unsteady flows about complete aircraft configurations for aeroelastic analysis of the flutter critical transonic speed range. The CAP-TSD code uses a time accurate approximate factorization algorithm for solution of the unsteady transonic small disturbance potential equation. An overview is given of the CAP-TSD code development effort along with recent algorithm modifications which are listed and discussed. Calculations are presented for several configurations including the General Dynamics 1/9th scale F-16C aircraft model to evaluate the algorithm and hence the reliability of the CAP-TSD code in general. Calculations are also presented for a flutter analysis of a 45 deg sweptback wing which agree well with the experimental data. Descriptions are presented of the CAP-TSD code and algorithm details along with results and comparisons which demonstrate the stability, accuracy, efficiency, and utility of CAP-TSD

    Calculation of steady and unsteady pressures at supersonic speeds with CAP-TSD

    Get PDF
    A finite difference technique is used to solve the transonic small disturbance flow equation making use of shock capturing to treat wave discontinuities. Thus the nonlinear effects of thickness and angle of attack are considered. Such an approach is made feasible by the development of a new code called CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance), and is based on a fully implicit approximate factorization (AF) finite difference method to solve the time dependent transonic small disturbance equation. The application of the CAP-TSD code to the calculation of low to moderate supersonic steady and unsteady flows is presented. In particular, comparisons with exact linear theory solutions are made for steady and unsteady cases to evaluate shock capturing and other features of the current method. In addition, steady solutions obtained from an Euler code are used to evaluate the small disturbance aspects of the code. Steady and unsteady pressure comparisons are made with measurements for an F-15 wing model and for the RAE tailplane model

    The Submillimeter Polarization Spectrum of M17

    Full text link
    We present 450 {\mu}m polarimetric observations of the M17 molecular cloud obtained with the SHARP polarimeter at the Caltech Submillimeter Observatory. Across the observed region, the magnetic field orientation is consistent with previous submillimeter and far-infrared polarization measurements. Our observations are centered on a region of the molecular cloud that has been compressed by stellar winds from a cluster of OB stars. We have compared these new data with previous 350 {\mu}m polarimetry and find an anti-correlation between the 450 to 350 {\mu}m polarization magnitude ratio and the ratio of 21 cm to 450 {\mu}m intensity. The polarization ratio is lower near the east end of the studied region where the cloud is exposed to stellar winds and radiation. At the west end of the region, the polarization ratio is higher. We interpret the varying polarization spectrum as evidence supporting the radiative alignment torque (RAT) model for grain alignment, implying higher alignment efficiency in the region that is exposed to a higher anisotropic radiation field.Comment: 24 pages, 10 figure

    Maximum Power Efficiency and Criticality in Random Boolean Networks

    Full text link
    Random Boolean networks are models of disordered causal systems that can occur in cells and the biosphere. These are open thermodynamic systems exhibiting a flow of energy that is dissipated at a finite rate. Life does work to acquire more energy, then uses the available energy it has gained to perform more work. It is plausible that natural selection has optimized many biological systems for power efficiency: useful power generated per unit fuel. In this letter we begin to investigate these questions for random Boolean networks using Landauer's erasure principle, which defines a minimum entropy cost for bit erasure. We show that critical Boolean networks maximize available power efficiency, which requires that the system have a finite displacement from equilibrium. Our initial results may extend to more realistic models for cells and ecosystems.Comment: 4 pages RevTeX, 1 figure in .eps format. Comments welcome, v2: minor clarifications added, conclusions unchanged. v3: paper rewritten to clarify it; conclusions unchange

    Initial application of CAP-TSD to wing flutter

    Get PDF
    The initial application of the CAP-TSD computer program for wing flutter analysis is presented. Computational Aeroelasticity Program - Transonic Small Disturbance (CAP-TSD) is based on an approximate factorization (AF) algorithm that is stable and efficient on supercomputers with vector arithmetic. CAP-TSD was used to calculate steady and unsteady pressures on wings and configurations at subsonic, transonic, and supersonic Mach numbers. However, the CAP-TSD code has been developed primarily for aeroelastic analysis. The initial efforts for validation of the aeroelastic analysis capability is presented. The initial applications include two series of symmetric, planar wing planforms. Well defined modal properties are available for these wings. In addition, transonic flutter boundaries are available for evaluation of the transonic capabilities of CAP-TSD

    A Critical Assessment of Protection for Key Wildlife and Salmon Habitats under the Proposed British Columbia Central Coast Land and Resource Management Plan

    Get PDF
    The Central Coast Land and Resource Management Plan (CCLRMP) table recently declared a consensus1 on proposed protected areas for British Columbia’s Central Coast. This region is recognized for its globally rare and largely intact mainland and island ecosystems and land use decisions should reflect this importance. We evaluated the efficacy of this proposal using a spatial assessment of habitat. We focus on protected areas in the context of the overall CCLRMP. We examined the level of protection provided by the CCLRMP in three key coastal habitats: deer winter range, wolf reproductive habitat, and salmon reproductive and rearing habitat. Assessment of deer winter range was limited to Heiltsuk Territory, which comprises a large proportion of the CCLRMP region

    Locking classical correlation in quantum states

    Full text link
    We show that there exist bipartite quantum states which contain large hidden classical correlation that can be unlocked by a disproportionately small amount of classical communication. In particular, there are (2n+1)(2n+1)-qubit states for which a one bit message doubles the optimal classical mutual information between measurement results on the subsystems, from n/2n/2 bits to nn bits. States exhibiting this behavior need not be entangled. We study the range of states exhibiting this phenomenon and bound its magnitude.Comment: 7 pages, revtex

    Achievable rates for the Gaussian quantum channel

    Get PDF
    We study the properties of quantum stabilizer codes that embed a finite-dimensional protected code space in an infinite-dimensional Hilbert space. The stabilizer group of such a code is associated with a symplectically integral lattice in the phase space of 2N canonical variables. From the existence of symplectically integral lattices with suitable properties, we infer a lower bound on the quantum capacity of the Gaussian quantum channel that matches the one-shot coherent information optimized over Gaussian input states.Comment: 12 pages, 4 eps figures, REVTe

    CAP-TSD: A program for unsteady transonic analysis of realistic aircraft configurations

    Get PDF
    The development of a new transonic code to predict unsteady flows about realistic aircraft configurations are described. An approximate factorization algorithm for solution of the unsteady transonic small disturbance equation is first described. Because of the superior stability characteristics of the AF algorithm, a new transonic aeroelasticity code was developed which is described in some detail. The new code was very easy to modify to include the additional aircraft components, so in a very short period of time the code was developed to treat complete aircraft configurations. Finally, applications are presented which demonstrate many of the geometry capabilities of the new code
    • …
    corecore