214 research outputs found

    Seroprevalence of Zika virus in wild African green monkeys and baboons

    Get PDF
    ABSTRACT Zika virus (ZIKV) has recently spread through the Americas and has been associated with a range of health effects, including birth defects in children born to women infected during pregnancy. Although the natural reservoir of ZIKV remains poorly defined, the virus was first identified in a captive “sentinel” macaque monkey in Africa in 1947. However, the virus has not been reported in humans or nonhuman primates (NHPs) in Africa outside Gabon in over a decade. Here, we examine ZIKV infection in 239 wild baboons and African green monkeys from South Africa, the Gambia, Tanzania, and Zambia using combinations of unbiased deep sequencing, quantitative reverse transcription-PCR (qRT-PCR), and an antibody capture assay that we optimized using serum collected from captive macaque monkeys exposed to ZIKV, dengue virus, and yellow fever virus. While we did not find evidence of active ZIKV infection in wild NHPs in Africa, we found variable ZIKV seropositivity of up to 16% in some of the NHP populations sampled. We anticipate that these results and the methodology described within will help in continued efforts to determine the prevalence, natural reservoir, and transmission dynamics of ZIKV in Africa and elsewhere. IMPORTANCE Zika virus (ZIKV) is a mosquito-borne virus originally discovered in a captive monkey living in the Zika Forest of Uganda, Africa, in 1947. Recently, an outbreak in South America has shown that ZIKV infection can cause myriad health effects, including birth defects in the children of women infected during pregnancy. Here, we sought to investigate ZIKV infection in wild African primates to better understand its emergence and spread, looking for evidence of active or prior infection. Our results suggest that up to 16% of some populations of nonhuman primate were, at some point, exposed to ZIKV. We anticipate that this study will be useful for future studies that examine the spread of infections from wild animals to humans in general and those studying ZIKV in primates in particular. Podcast: A podcast concerning this article is available

    Overexpression screen of interferon-stimulated genes identifies RARRES3 as a restrictor of Toxoplasma gondii infection

    Get PDF
    Toxoplasma gondii is an important human pathogen infecting an estimated one in three people worldwide. The cytokine interferon gamma (IFNγ) is induced during infection and is critical for restricting T. gondii growth in human cells. Growth restriction is presumed to be due to the induction of interferon-stimulated genes (ISGs) that are upregulated to protect the host from infection. Although there are hundreds of ISGs induced by IFNγ, their individual roles in restricting parasite growth in human cells remain somewhat elusive. To address this deficiency, we screened a library of 414 IFNγ induced ISGs to identify factors that impact T. gondii infection in human cells. In addition to IRF1, which likely acts through the induction of numerous downstream genes, we identified RARRES3 as a single factor that restricts T. gondii infection by inducing premature egress of the parasite in multiple human cell lines. Overall, while we successfully identified a novel IFNγ induced factor restricting T. gondii infection, the limited number of ISGs capable of restricting T. gondii infection when individually expressed suggests that IFNγ-mediated immunity to T. gondii infection is a complex, multifactorial process

    Antithetic effect of interferon-α on cell-free and cell-to-cell HIV-1 infection

    Get PDF
    In HIV-1-infected individuals, transmitted/founder (TF) virus contributes to establish new infection and expands during the acute phase of infection, while chronic control (CC) virus emerges during the chronic phase of infection. TF viruses are more resistant to interferon-alpha (IFN-α)-mediated antiviral effects than CC virus, however, its virological relevance in infected individuals remains unclear. Here we perform an experimental-mathematical investigation and reveal that IFN-α strongly inhibits cell-to-cell infection by CC virus but only weakly affects that by TF virus. Surprisingly, IFN-α enhances cell-free infection of HIV-1, particularly that of CC virus, in a virus-cell density-dependent manner. We further demonstrate that LY6E, an IFN-stimulated gene, can contribute to the density-dependent enhancement of cell-free HIV-1 infection. Altogether, our findings suggest that the major difference between TF and CC viruses can be explained by their resistance to IFN-α-mediated inhibition of cell-to-cell infection and their sensitivity to IFN-α-mediated enhancement of cell-free infection

    Multiple Interferon Stimulated Genes Synergize with the Zinc Finger Antiviral Protein to Mediate Anti-Alphavirus Activity

    Get PDF
    The zinc finger antiviral protein (ZAP) is a host factor that mediates inhibition of viruses in the Filoviridae, Retroviridae and Togaviridae families. We previously demonstrated that ZAP blocks replication of Sindbis virus (SINV), the prototype Alphavirus in the Togaviridae family at an early step prior to translation of the incoming genome and that synergy between ZAP and one or more interferon stimulated genes (ISGs) resulted in maximal inhibitory activity. The present study aimed to identify those ISGs that synergize with ZAP to mediate Alphavirus inhibition. Using a library of lentiviruses individually expressing more than 350 ISGs, we screened for inhibitory activity in interferon defective cells with or without ZAP overexpression. Confirmatory tests of the 23 ISGs demonstrating the largest infection reduction in combination with ZAP revealed that 16 were synergistic. Confirmatory tests of all potentially synergistic ISGs revealed 15 additional ISGs with a statistically significant synergistic effect in combination with ZAP. These 31 ISGs are candidates for further mechanistic studies. The number and diversity of the identified ZAP-synergistic ISGs lead us to speculate that ZAP may play an important role in priming the cell for optimal ISG function

    Interferon-Induced Ifit2/ISG54 Protects Mice from Lethal VSV Neuropathogenesis

    Get PDF
    Interferon protects mice from vesicular stomatitis virus (VSV) infection and pathogenesis; however, it is not known which of the numerous interferon-stimulated genes (ISG) mediate the antiviral effect. A prominent family of ISGs is the interferon-induced with tetratricopeptide repeats (Ifit) genes comprising three members in mice, Ifit1/ISG56, Ifit2/ISG54 and Ifit3/ISG49. Intranasal infection with a low dose of VSV is not lethal to wild-type mice and all three Ifit genes are induced in the central nervous system of the infected mice. We tested their potential contributions to the observed protection of wild-type mice from VSV pathogenesis, by taking advantage of the newly generated knockout mice lacking either Ifit2 or Ifit1. We observed that in Ifit2 knockout (Ifit2−/−) mice, intranasal VSV infection was uniformly lethal and death was preceded by neurological signs, such as ataxia and hind limb paralysis. In contrast, wild-type and Ifit1−/− mice were highly protected and survived without developing such disease. However, when VSV was injected intracranially, virus replication and survival were not significantly different between wild-type and Ifit2−/− mice. When administered intranasally, VSV entered the central nervous system through the olfactory bulbs, where it replicated equivalently in wild-type and Ifit2−/− mice and induced interferon-β. However, as the infection spread to other regions of the brain, VSV titers rose several hundred folds higher in Ifit2−/− mice as compared to wild-type mice. This was not caused by a broadened cell tropism in the brains of Ifit2−/− mice, where VSV still replicated selectively in neurons. Surprisingly, this advantage for VSV replication in the brains of Ifit2−/− mice was not observed in other organs, such as lung and liver. Pathogenesis by another neurotropic RNA virus, encephalomyocarditis virus, was not enhanced in the brains of Ifit2−/− mice. Our study provides a clear demonstration of tissue-, virus- and ISG-specific antiviral action of interferon

    Real-time imaging of hepatitis C virus infection using a fluorescent cell-based reporter system

    Get PDF
    Author Manuscript 2010 August 1Hepatitis C virus (HCV), which infects 2–3% of the world population, is a causative agent of chronic hepatitis and the leading indication for liver transplantation1. The ability to propagate HCV in cell culture (HCVcc) is a relatively recent breakthrough and a key tool in the quest for specific antiviral therapeutics. Monitoring HCV infection in culture generally involves bulk population assays, use of genetically modified viruses and/or terminal processing of potentially precious samples. Here we develop a cell-based fluorescent reporter system that allows sensitive distinction of individual HCV-infected cells in live or fixed samples. We demonstrate use of this technology for several previously intractable applications, including live-cell imaging of viral propagation and host response, as well as visualizing infection of primary hepatocyte cultures. Integration of this reporter with modern image-based analysis methods could open new doors for HCV research.New York (State). Dept. of Health (Empire State Stem Cell Fund Contract C023046)United States. Public Health Service (Grant R01 DK56966)National Institutes of Health (U.S.) (Roadmap for Medical Research Grant 1 R01 DK085713-01)Howard Hughes Medical Institute (Investigator

    Virology under the microscope—a call for rational discourse

    Get PDF
    Viruses have brought humanity many challenges: respiratory infection, cancer, neurological impairment and immunosuppression to name a few. Virology research over the last 60+ years has responded to reduce this disease burden with vaccines and antivirals. Despite this long history, the COVID-19 pandemic has brought unprecedented attention to the field of virology. Some of this attention is focused on concern about the safe conduct of research with human pathogens. A small but vocal group of individuals has seized upon these concerns – conflating legitimate questions about safely conducting virus-related research with uncertainties over the origins of SARS-CoV-2. The result has fueled public confusion and, in many instances, ill-informed condemnation of virology. With this article, we seek to promote a return to rational discourse. We explain the use of gain-of-function approaches in science, discuss the possible origins of SARS-CoV-2 and outline current regulatory structures that provide oversight for virological research in the United States. By offering our expertise, we – a broad group of working virologists – seek to aid policy makers in navigating these controversial issues. Balanced, evidence-based discourse is essential to addressing public concern while maintaining and expanding much-needed research in virology
    corecore