2,806 research outputs found
Recommended from our members
Pathways of genetic adaptation: multistep origin of mutants under selection without induced mutagenesis in Salmonella enterica.
In several bacterial systems, mutant cell populations plated on growth-restricting medium give rise to revertant colonies that accumulate over several days. One model suggests that nongrowing parent cells mutagenize their own genome and thereby create beneficial mutations (stress-induced mutagenesis). By this model, the first-order induction of new mutations in a nongrowing parent cell population leads to the delayed accumulation of visible colonies. In an alternative model (selection only), selective conditions allow preexisting small-effect mutants to initiate clones that grow and give rise to faster-growing mutants. By the selection-only model, the delay in appearance of revertant colonies reflects (1) the time required for initial clones to reach a size sufficient to allow the second mutation plus (2) the time required for growth of the improved subclone. We previously characterized a system in which revertant colonies accumulate slowly and contain cells with two mutations, one formed before plating and one after. This left open the question of whether mutation rates increase under selection. Here we measure the unselected formation rate and the growth contribution of each mutant type. When these parameters are used in a graphic model of revertant colony development, they demonstrate that no increase in mutation rate is required to explain the number and delayed appearance of two of the revertant types
Plasmid copy number underlies adaptive mutability in bacteria.
The origin of mutations under selection has been intensively studied using the Cairns-Foster system, in which cells of an Escherichia coli lac mutant are plated on lactose and give rise to 100 Lac+ revertants over several days. These revertants have been attributed variously to stress-induced mutagenesis of nongrowing cells or to selective improvement of preexisting weakly Lac+ cells with no mutagenesis. Most revertant colonies (90%) contain stably Lac+ cells, while others (10%) contain cells with an unstable amplification of the leaky mutant lac allele. Evidence is presented that both stable and unstable Lac+ revertant colonies are initiated by preexisting cells with multiple copies of the F'lac plasmid, which carries the mutant lac allele. The tetracycline analog anhydrotetracycline (AnTc) inhibits growth of cells with multiple copies of the tetA gene. Populations with tetA on their F'lac plasmid include rare cells with an elevated plasmid copy number and multiple copies of both the tetA and lac genes. Pregrowth of such populations with AnTc reduces the number of cells with multiple F'lac copies and consequently the number of Lac+ colonies appearing under selection. Revertant yield is restored rapidly by a few generations of growth without AnTc. We suggest that preexisting cells with multiple F'lac copies divide very little under selection but have enough energy to replicate their F'lac plasmids repeatedly until reversion initiates a stable Lac+ colony. Preexisting cells whose high-copy plasmid includes an internal lac duplication grow under selection and produce an unstable Lac+ colony. In this model, all revertant colonies are initiated by preexisting cells and cannot be stress induced
Prospective, multicenter study of P4HB (Phasix) mesh for hernia repair in cohort at risk for complications: 3-Year follow-up
Background: This study represents a prospective, multicenter, open-label study to assess the safety, performance, and outcomes of poly-4-hydroxybutyrate (P4HB, Phasix) mesh for primary ventral, primary incisional, or multiply-recurrent hernia in subjects at risk for complications. This study reports 3-year clinical outcomes.
Materials and methods: P4HB mesh was implanted in 121 patients via retrorectus or onlay technique. Physical exam and/or quality of life surveys were completed at 1, 3, 6,12, 18, 24, and 36 months, with 5-year (60-month) follow-up ongoing.
Results: A total of n = 121 patients were implanted with P4HB mesh (n = 75 (62%) female) with a mean age of 54.7 +/- 12.0 years and mean BMI of 32.2 +/- 4.5 kg/m(2) (+/-standard deviation). Comorbidities included: obesity (78.5%), active smokers (23.1%), COPD (28.1%), diabetes mellitus (33.1%), immunosuppression (8.3%), coronary artery disease (21.5%), chronic corticosteroid use (5.0%), hypo-albuminemia (2.5%), advanced age (5.0%), and renal insufficiency (0.8%). Hernias were repaired via retrorectus (n = 45, 37.2% with myofascial release (MR) or n = 43, 35.5% without MR), onlay (n = 8, 6.6% with MR or n = 24, 19.8% without MR), or not reported (n = 1, 0.8%). 82 patients (67.8%) completed 36-month follow-up. 17 patients (17.9% +/- 0.4%) experienced hernia recurrence at 3 years, with n = 9 in the retrorectus group and n = 8 in the onlay group. SSI (n = 11) occurred in 9.3% +/- 0.03% of patients.
Conclusions: Long-term outcomes following ventral hernia repair with P4HB mesh demonstrate low recurrence rates at 3-year (36-month) postoperative time frame with no patients developing late mesh complications or requiring mesh removal. 5-year (60-month) follow-up is ongoing
Valuing initial teacher education at Master's level
The future of Master’s-level work in initial teacher education (ITE) in England seems uncertain. Whilst the coalition government has expressed support for Master’s-level work, its recent White Paper focuses on teaching skills as the dominant form of professional development. This training discourse is in tension with the view of professional learning advocated by ITE courses that offer Master’s credits. Following a survey of the changing perceptions of Master’s-level study during a Post Graduate Certificate in Education course by student teachers in four subject groups, this paper highlights how the process of professional learning can have the most impact on how they value studying at a higher level during their early professional development
Recommended from our members
Inhibition of adenovirus serotype 14 infection by octadecyloxyethyl esters of (S)-[(3-hydroxy-2-phosphonomethoxy)propyl]- nucleosides in vitro.
On September 22, 2008, a physician on Prince of Wales Island, Alaska, notified the Alaska Department of Health and Social Services (ADHSS) of an unusually high number of adult patients with recently diagnosed pneumonia (n = 10), including three persons who required hospitalization and one who died. ADHSS and CDC conducted an investigation to determine the cause and distribution of the outbreak, identify risk factors for hospitalization, and implement control measures. This report summarizes the results of that investigation, which found that the outbreak was caused by adenovirus 14 (Ad14), an emerging adenovirus serotype in the United States that is associated with a higher rate of severe illness compared with other adenoviruses. Among the 46 cases identified in the outbreak from September 1 through October 27, 2008, the most frequently observed characteristics included the following: male (70%), Alaska Native (61%), underlying pulmonary disease (44%), aged > or = 65 years (26%), and current smoker (48%). Patients aged > or = 65 years had a fivefold increased risk for hospitalization. The most commonly reported symptoms were cough (100%), shortness of breath (87%), and fever (74%). Of the 11 hospitalized patients, three required intensive care, and one required mechanical ventilation. One death was reported. Ad14 isolates obtained during the outbreak were identical genetically to those in recent community-acquired outbreaks in the United States which suggests the emergence of a new, and possibly more virulent Ad14 variant. Clinicians should consider Ad14 infection in the differential diagnosis for patients with community-acquired pneumonia, particularly when unexplained clusters of severe respiratory infections are detected
Effect of Growth Under Selection on Appearance of Chromosomal Mutations in Salmonella enterica
Populations adapt physiologically using regulatory mechanisms and genetically by means of mutations that improve growth. During growth under selection, genetic adaptation can be rapid. In several genetic systems, the speed of adaptation has been attributed to cellular mechanisms that increase mutation rates in response to growth limitation. An alternative possibility is that growth limitation serves only as a selective agent but acts on small-effect mutations that are common under all growth conditions. The genetic systems that initially suggested stress-induced mutagenesis have been analyzed without regard for multistep adaptation and some include features that make such analysis difficult. To test the selection-only model, a simpler system is examined, whose behavior was originally attributed to stress-induced mutagenesis (Yang et al. 2001, 2006). A population with a silent chromosomal lac operon gives rise to Lac+ revertant colonies that accumulate over 6 days under selection. Each colony contains a mixture of singly and doubly mutant cells. Evidence is provided that the colonies are initiated by pre-existing single mutants with a weak Lac+ phenotype. Under selection, these cells initiate slow-growing clones, in which a second mutation arises and improves growth of the resulting double mutant. The system shows no evidence of general mutagenesis during selection. Selection alone may explain rapid adaptation in this and other systems that give the appearance of mutagenesis
Inferring Foraging Areas of Nesting Loggerhead Turtles Using Satellite Telemetry and Stable Isotopes
In recent years, the use of intrinsic markers such as stable isotopes to link breeding and foraging grounds of migratory species has increased. Nevertheless, several assumptions still must be tested to interpret isotopic patterns found in the marine realm. We used a combination of satellite telemetry and stable isotope analysis to (i) identify key foraging grounds used by female loggerheads nesting in Florida and (ii) examine the relationship between stable isotope ratios and post-nesting migration destinations. We collected tissue samples for stable isotope analysis from 14 females equipped with satellite tags and an additional 57 untracked nesting females. Telemetry identified three post-nesting migratory pathways and associated non-breeding foraging grounds: (1) a seasonal continental shelf-constrained migratory pattern along the northeast U. S. coastline, (2) a non-breeding residency in southern foraging areas and (3) a residency in the waters adjacent to the breeding area. Isotopic variability in both delta C-13 and delta N-15 among individuals allowed identification of three distinct foraging aggregations. We used discriminant function analysis to examine how well delta C-13 and delta N-15 predict female post-nesting migration destination. The discriminant analysis classified correctly the foraging ground used for all but one individual and was used to predict putative feeding areas of untracked turtles. We provide the first documentation that the continental shelf of the Mid-and South Atlantic Bights are prime foraging areas for a large number (61%) of adult female loggerheads from the largest loggerhead nesting population in the western hemisphere and the second largest in the world. Our findings offer insights for future management efforts and suggest that this technique can be used to infer foraging strategies and residence areas in lieu of more expensive satellite telemetry, enabling sample sizes that are more representative at the population level
Types of farming in Missouri
Publication authorized April 28, 1938."University of Missouri, Agricultural Experiment Station in cooperation with Bureau of Agricultural Economics, United States Department of Agriculture."Digitized 2007 AES.Includes bibliographical references
- …