88 research outputs found

    Status of Silicon Nitride Material Properties, Component Fabrication, and Applications for Small Gas Turbines

    Get PDF
    ABSTRACT Extensive progress has been made in the development of high performance silicon nitride structural ceramics and component fabrication

    Individual Behaviors Dominate the Dynamics of an Urban Mountain Lion Population Isolated by Roads

    Get PDF
    SummaryLarge carnivores can be particularly sensitive to the effects of habitat fragmentation on genetic diversity [1, 2]. The Santa Monica Mountains (SMMs), a large natural area within Greater Los Angeles, is completely isolated by urban development and the 101 freeway to the north. Yet the SMMs support a population of mountain lions (Puma concolor), a very rare example of a large carnivore persisting within the boundaries of a megacity. GPS locations of radio-collared lions indicate that freeways are a near-absolute barrier to movement. We genotyped 42 lions using 54 microsatellite loci and found that genetic diversity in SMM lions, prior to 2009, was lower than that for any population in North America except in southern Florida, where inbreeding depression led to reproductive failure [3–5]. We document multiple instances of father-daughter inbreeding and high levels of intraspecific strife, including the unexpected behavior of a male killing two of his offspring and a mate and his son killing two of his brothers. Overall, no individuals from the SMMs have successfully dispersed. Gene flow is critical for this population, and we show that a single male immigrated in 2009, successfully mated, and substantially enhanced genetic diversity. Our results imply that individual behaviors, most likely caused by limited area and reduced opportunities to disperse, may dominate the fate of small, isolated populations of large carnivores. Consequently, comprehensive behavioral monitoring can suggest novel solutions for the persistence of small populations, such as the transfer of individuals across dispersal barriers

    Mapping evolutionary process: a multi-taxa approach to conservation prioritization

    Get PDF
    Human-induced land use changes are causing extensive habitat fragmentation. As a result, many species are not able to shift their ranges in response to climate change and will likely need to adapt in situ to changing climate conditions. Consequently, a prudent strategy to maintain the ability of populations to adapt is to focus conservation efforts on areas where levels of intraspecific variation are high. By doing so, the potential for an evolutionary response to environmental change is maximized. Here, we use modeling approaches in conjunction with environmental variables to model species distributions and patterns of genetic and morphological variation in seven Ecuadorian amphibian, bird, and mammal species. We then used reserve selection software to prioritize areas for conservation based on intraspecific variation or species-level diversity. Reserves selected using species richness and complementarity showed little overlap with those based on genetic and morphological variation. Priority areas for intraspecific variation were mainly located along the slopes of the Andes and were largely concordant among species, but were not well represented in existing reserves. Our results imply that in order to maximize representation of intraspecific variation in reserves, genetic and morphological variation should be included in conservation prioritization

    Batrachochytrium dendrobatidis Shows High Genetic Diversity and Ecological Niche Specificity among Haplotypes in the Maya Mountains of Belize

    Get PDF
    The amphibian pathogen Batrachochytrium dendrobatidis (Bd) has been implicated in amphibian declines around the globe. Although it has been found in most countries in Central America, its presence has never been assessed in Belize. We set out to determine the range, prevalence, and diversity of Bd using quantitative PCR (qPCR) and sequencing of a portion of the 5.8 s and ITS1-2 regions. Swabs were collected from 524 amphibians of at least 26 species in the protected areas of the Maya Mountains of Belize. We sequenced a subset of 72 samples that had tested positive for Bd by qPCR at least once; 30 samples were verified as Bd. Eight unique Bd haplotypes were identified in the Maya Mountains, five of which were previously undescribed. We identified unique ecological niches for the two most broadly distributed haplotypes. Combined with data showing differing virulence shown in different strains in other studies, the 5.8 s - ITS1-2 region diversity found in this study suggests that there may be substantial differences among populations or haplotypes. Future work should focus on whether specific haplotypes for other genomic regions and possibly pathogenicity can be associated with haplotypes at this locus, as well as the integration of molecular tools with other ecological tools to elucidate the ecology and pathogenicity of Bd

    Extensive population genetic structure in the giraffe

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A central question in the evolutionary diversification of large, widespread, mobile mammals is how substantial differentiation can arise, particularly in the absence of topographic or habitat barriers to dispersal. All extant giraffes (<it>Giraffa camelopardalis</it>) are currently considered to represent a single species classified into multiple subspecies. However, geographic variation in traits such as pelage pattern is clearly evident across the range in sub-Saharan Africa and abrupt transition zones between different pelage types are typically not associated with extrinsic barriers to gene flow, suggesting reproductive isolation.</p> <p>Results</p> <p>By analyzing mitochondrial DNA sequences and nuclear microsatellite loci, we show that there are at least six genealogically distinct lineages of giraffe in Africa, with little evidence of interbreeding between them. Some of these lineages appear to be maintained in the absence of contemporary barriers to gene flow, possibly by differences in reproductive timing or pelage-based assortative mating, suggesting that populations usually recognized as subspecies have a long history of reproductive isolation. Further, five of the six putative lineages also contain genetically discrete populations, yielding at least 11 genetically distinct populations.</p> <p>Conclusion</p> <p>Such extreme genetic subdivision within a large vertebrate with high dispersal capabilities is unprecedented and exceeds that of any other large African mammal. Our results have significant implications for giraffe conservation, and imply separate <it>in situ </it>and <it>ex situ </it>management, not only of pelage morphs, but also of local populations.</p

    Coquillettidia (Culicidae, Diptera) mosquitoes are natural vectors of avian malaria in Africa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mosquito vectors of <it>Plasmodium </it>spp. have largely been overlooked in studies of ecology and evolution of avian malaria and other vertebrates in wildlife.</p> <p>Methods</p> <p><it>Plasmodium </it>DNA from wild-caught <it>Coquillettidia </it>spp. collected from lowland forests in Cameroon was isolated and sequenced using nested PCR. Female <it>Coquillettidia aurites </it>were also dissected and salivary glands were isolated and microscopically examined for the presence of sporozoites.</p> <p>Results</p> <p>In total, 33% (85/256) of mosquito pools tested positive for avian <it>Plasmodium </it>spp., harbouring at least eight distinct parasite lineages. Sporozoites of <it>Plasmodium </it>spp. were recorded in salivary glands of <it>C. aurites </it>supporting the PCR data that the parasites complete development in these mosquitoes. Results suggest <it>C. aurites</it>, <it>Coquillettidia pseudoconopas </it>and <it>Coquillettidia metallica </it>as new and important vectors of avian malaria in Africa. All parasite lineages recovered clustered with parasites formerly identified from several bird species and suggest the vectors capability of infecting birds from different families.</p> <p>Conclusion</p> <p>Identifying the major vectors of avian <it>Plasmodium </it>spp. will assist in understanding the epizootiology of avian malaria, including differences in this disease distribution between pristine and disturbed landscapes.</p

    Variation of BMP3 Contributes to Dog Breed Skull Diversity

    Get PDF
    Since the beginnings of domestication, the craniofacial architecture of the domestic dog has morphed and radiated to human whims. By beginning to define the genetic underpinnings of breed skull shapes, we can elucidate mechanisms of morphological diversification while presenting a framework for understanding human cephalic disorders. Using intrabreed association mapping with museum specimen measurements, we show that skull shape is regulated by at least five quantitative trait loci (QTLs). Our detailed analysis using whole-genome sequencing uncovers a missense mutation in BMP3. Validation studies in zebrafish show that Bmp3 function in cranial development is ancient. Our study reveals the causal variant for a canine QTL contributing to a major morphologic trait

    Genetic evidence for the persistence of the critically endangered Sierra Nevada red fox in California

    Get PDF
    California is home to both the native state-threatened Sierra Nevada red fox (Vulpes vulpes necator), which historically inhabited high elevations of the Sierra Nevada and Cascade mountains, and to multiple low-elevation red fox populations thought to be of exotic origin. During the past few decades the lowland populations have dramatically expanded their distribution, and possibly moved into the historic range of the native high-elevation fox. To determine whether the native red fox persists in its historic range in California, we compared mitochondrial cytochrome-b haplotypes of the only currently-known high-elevation population (n = 9 individuals) to samples from 3 modern lowland populations (n = 35) and historic (1911–1941) high-elevation (n = 22) and lowland (n = 7) populations. We found no significant population differentiation among the modern and historic high-elevation populations (average pairwise F ST = 0.06), but these populations differed substantially from all modern and historic lowland populations (average pairwise F ST = 0.52). Among lowland populations, the historic and modern Sacramento Valley populations were not significantly differentiated from one another (F ST = −0.06), but differed significantly from recently founded populations in the San Francisco Bay region and in southern California (average pairwise F ST = 0.42). Analysis of molecular variance indicated that 3 population groupings (mountain, Sacramento Valley, and other lowland regions) explained 45% of molecular variance (F CT = 0.45) whereas only 4.5% of the variance was partitioned among populations within these groupings (F SC = 0.08). These findings provide strong evidence that the native Sierra Nevada red fox has persisted in northern California. However, all nine samples from this population had the same haplotype, suggesting that several historic haplotypes may have become lost. Unidentified barriers have apparently prevented gene flow from the Sacramento Valley population to other eastern or southern populations in California. Future studies involving nuclear markers are needed to assess the origin of the Sierra Nevada red fox and to quantify levels of nuclear gene flow
    • 

    corecore