7,539 research outputs found

    Automatic Detection of Seizures with Applications

    Get PDF
    There are an estimated two million people with epilepsy in the United States. Many of these people do not respond to anti-epileptic drug therapy. Two devices can be developed to assist in the treatment of epilepsy. The first is a microcomputer-based system designed to process massive amounts of electroencephalogram (EEG) data collected during long-term monitoring of patients for the purpose of diagnosing seizures, assessing the effectiveness of medical therapy, or selecting patients for epilepsy surgery. Such a device would select and display important EEG events. Currently many such events are missed. A second device could be implanted and would detect seizures and initiate therapy. Both of these devices require a reliable seizure detection algorithm. A new algorithm is described. It is believed to represent an improvement over existing seizure detection algorithms because better signal features were selected and better standardization methods were used

    A two sector model of migration with urban unemployment in developing economies

    Get PDF

    Wage policy and employment in a developing economy

    Get PDF

    The NASA Langley laminar-flow-control experiment on a swept, supercritical airfoil: Evaluation of initial perforated configuration

    Get PDF
    The initial evaluation of a large-chord, swept, supercritical airfoil incorporating an active laminar-flow-control (LFC) suction system with a perforated upper surface is documented in a chronological manner, and the deficiencies in the suction capability of the perforated panels as designed are described. The experiment was conducted in the Langley 8-Foot Transonic Pressure Tunnel. Also included is an evaluation of the influence of the proximity of the tunnel liner to the upper surface of the airfoil pressure distribution

    The NASA Langley Laminar-Flow-Control Experiment on a Swept Supercritical Airfoil: Basic Results for Slotted Configuration

    Get PDF
    The effects of Mach number and Reynolds number on the experimental surface pressure distributions and transition patterns for a large chord, swept supercritical airfoil incorporating an active Laminar Flow Control suction system with spanwise slots are presented. The experiment was conducted in the Langley 8 foot Transonic Pressure Tunnel. Also included is a discussion of the influence of model/tunnel liner interactions on the airfoil pressure distribution. Mach number was varied from 0.40 to 0.82 at two chord Reynolds numbers, 10 and 20 x 1,000,000, and Reynolds number was varied from 10 to 20 x 1,000,000 at the design Mach number

    Photon-photon correlations and entanglement in doped photonic crystals

    Full text link
    We consider a photonic crystal (PC) doped with four-level atoms whose intermediate transition is coupled near-resonantly with a photonic band-gap edge. We show that two photons, each coupled to a different atomic transition in such atoms, can manifest strong phase or amplitude correlations: One photon can induce a large phase shift on the other photon or trigger its absorption and thus operate as an ultrasensitive nonlinear photon-switch. These features allow the creation of entangled two-photon states and have unique advantages over previously considered media: (i) no control lasers are needed; (ii) the system parameters can be chosen to cause full two-photon entanglement via absorption; (iii) a number of PCs can be combined in a network.Comment: Modified, expanded text; added reference
    corecore