50 research outputs found

    Stability of Pseudo-Funicular Elastic Grid Shells

    Get PDF
    International audienceThe paper presents some results on the influence of the pre-stress induced by the erection method of elastic grid shells on their buckling capacity. It starts with the numerical methods and their validation with the study of a prebuckled arch. Then, a form-finding scheme using low-speed dynamics is used to generate automatically a family of elastic grid shells, and their buckling capacity is compared to the one of grid shells with the exact same geometry, but without any pre-stress. The paper demonstrates finally that the pre-stress decreases by a few percent the buckling capacity of elastic grid shells

    Combining structural performance and designer preferences in evolutionary design space exploration

    Get PDF
    This paper addresses the need to consider both quantitative performance goals and qualitative requirements in conceptual design. A new computational approach for design space exploration is proposed that extends existing interactive evolutionary algorithms for increased inclusion of designer preferences, overcoming the weaknesses of traditional optimization that have limited its use in practice. This approach allows designers to set the evolutionary parameters of mutation rate and generation size, in addition to parent selection, in order to steer design space exploration. This paper demonstrates the potential of this approach through a numerical parametric study, a software implementation, and series of case studies

    The Graphic Statics behind the Collier Memorial

    Get PDF
    This paper reviews the various graphic statics methods applied during the early structural design of the Collier Memorial, Cambridge, MA. Built in 2015 to honor fallen MIT Police Officer Sean Collier, the monument is a vaulted assembly of massive granite blocks. They are held together with pure compression contact when under the action of gravity alone. This non-conventional structural typology has only rare contemporary precedents and its design consequently innovates in various areas. In particular, assumptions of plastic theory and graphic statics have been combined to explore the design space, to assess stability, to study collapse mechanisms and to provide factors of safety related to maximum allowed displacements and maximum allowed live load. These methods proved to be a faster and sounder alternative to conventional discrete-element methods during the conceptual design stage

    Material and Seismic Assessment of the Great House at Casa Grande Ruins National Monument, Arizona

    Get PDF
    The authors characterized earthen wall materials and plasters in a mid-fourteenth-century Hohokam great house at Casa Grande Ruins National Monument (Arizona) and assessed the seismic susceptibility of its puddled earth walls. Characterization included determining the microstructure, microcomposition, porosity, aggregate mineralogy, and identification of phases in the binding matrix for each of 36 samples and reconstructing plaster technologies, including material selection, preparation, and application sequences. Findings support the ideas that earthen materials were manipulated to optimize their performance to suit the unique site conditions and needs of the ancient people using the structure and included finishes that were unusual in southwestern sites from this time period. By using a new set of tools that integrate the complicated geometry of individual wall segments as captured in light detection and ranging (LiDAR) scans (models were generated in Rhino version 5) with the dynamic analysis of rocking mechanisms (tools for this analysis were developed in Rhino), seismic collapse assessment was used to identify the most vulnerable parts of the building to earthquake loading and provided an initial evaluation of the seismic overturning capacity of these wall segments

    An Optimized Bracing System for Distributed Lateral Loads

    Get PDF
    One of the most crucial components of a tall building is its lateral loading system. In this paper, we provide the development of a lateral bracing system that results in bracing material savings of up to 50% relative to a traditional X-Bracing system, as well as lighter corner columns due to the more efficient load paths of the lateral forces to the base. The solution naturally follows a linearized funicular curve, and the result provides a reasonable and replicable system from a manufacturing standpoint

    Structural optimization of 3D masonry buildings

    Get PDF
    In the design of buildings, structural analysis is traditionally performed after the aesthetic design has been determined and has little influence on the overall form. In contrast, this paper presents an approach to guide the form towards a shape that is more structurally sound. Our work is centered on the study of how variations of the geometry might improve structural stability. We define a new measure of structural soundness for masonry buildings as well as cables, and derive its closed-form derivative with respect to the displacement of all the vertices describing the geometry. We start with a gradient descent tool which displaces each vertex along the gradient. We then introduce displacement operators, imposing constraints such as the preservation of orientation or thickness; or setting additional objectives such as volume minimization.Shell Oil CompanyNatural Sciences and Engineering Research Council of Canada (PGS Program)Samsung Scholarship Foundatio
    corecore