5 research outputs found

    Original ERG traces.

    No full text
    <p>Original ERG traces for L- (10% cone contrast, dark red traces) and M- cone (10% cone contrast, green dashed traces) isolating stimuli, measured in one subject. The responses from two temporal frequencies (500 ms excerpts at 12 Hz and 200 ms excerpts at 36 Hz) and five different spatial configurations (20°, 50°, FF, AN10°, AN50°) are shown.</p

    Phase data.

    No full text
    <p>Averaged phase values (left plots) for L- (red circles) and M- cone (green triangles) driven ERG responses as a function of stimuli configuration at 5 different temporal frequencies. The right plots correspond to the averaged L-M phase difference estimated from phase responses at each temporal frequency.</p

    Amplitudes as a function of stimulus diameter.

    No full text
    <p>Linear regression analysis between the logarithm of amplitude and the logarithm of stimulus diameter for L-cone (red circles) and M-cone (green triangles) driven ERGs at 5 different temporal frequencies. The regression coefficient (R<sup>2</sup>) and the linear regressions are showed for each regression.</p

    Achromatopsia-Visual Cortex Stability and Plasticity in the Absence of Functional Cones

    No full text
    PurposeAchromatopsia is a rare inherited disorder rendering retinal cone photoreceptors nonfunctional. As a consequence, the sizable foveal representation in the visual cortex is congenitally deprived of visual input, which prompts a fundamental question: is the cortical representation of the central visual field in patients with achromatopsia remapped to take up processing of paracentral inputs? Such remapping might interfere with gene therapeutic treatments aimed at restoring cone function.MethodsWe conducted a multicenter study to explore the nature and plasticity of vision in the absence of functional cones in a cohort of 17 individuals affected by autosomal recessive achromatopsia and confirmed biallelic disease-causing CNGA3 or CNGB3 mutations. Specifically, we tested the hypothesis of foveal remapping in human achromatopsia. For this purpose, we applied two independent functional magnetic resonance imaging (fMRI)-based mapping approaches, i.e. conventional phase-encoded eccentricity and population receptive field mapping, to separate data sets.ResultsBoth fMRI approaches produced the same result in the group comparison of achromatopsia versus healthy controls: sizable remapping of the representation of the central visual field in the primary visual cortex was not apparent.ConclusionsRemapping of the cortical representation of the central visual field is not a general feature in achromatopsia. It is concluded that plasticity of the human primary visual cortex is less pronounced than previously assumed. A pretherapeutic imaging workup is proposed to optimize interventions
    corecore