367 research outputs found
Factors for unequal distribution of primary school teachers in Ruangwa District council, Tanzania
This study attempts to explore the factors for continuing existence of unequal distribution of teachers in Ruangwa District council, Tanzania. To capture the objectives of this study random and purposive sampling techniques were employed in the selection of a sample of 160 respondents out of a total of a population of 479. The findings suggest that a combination of lack of motivation and incentives; attrition; poor recruitment and deployment policy; preference to work in certain areas; lack of opportunity to career development; access to social service such as health care; and teachers’ mobility are the factors responsible for inequitable distribution of teachers in Ruangwa District council. Therefore this study recommends the government devises a good strategy for motivating teachers to accept posts in remote rural areas. Comprehensive deployments policies need to be developed that ensure sufficient teachers in remote schools. Key Words: Education; Tanzania; Attrition; Teachers, Equitable Distribution
Modeling the relationship between the population prevalence of Plasmodium falciparum malaria and anemia.
More than half of all young children and pregnant women are affected by anemia. Although its etiology is multi-factorial, malaria is likely to be a major contributor to chronic anemia in endemic areas. Recent reviews have examined the effect of community-based malaria control interventions on anemia. We analyze how the prevalence of anemia depends on that of Plasmodium falciparum malaria by developing models of the excess risk of anemia caused by malaria at a population level in 24 villages in northeastern Tanzania. In that setting, we estimated that the prevalence of a hemoglobin level < 8 g/dL attributable to malaria was 4.6% in infants, 4.1% in children one year of age, 2.7% in children two years of age, and 3.3% in women of childbearing age. Successful validation of our models in other malaria-endemic settings would enable their use for predicting the impact of malaria control interventions on anemia, and for long-term monitoring and surveillance of malaria
Satisfactory safety and immunogenicity of MSP3 malaria vaccine candidate in Tanzanian children aged 12-24 months.
BACKGROUND: Development and deployment of an effective malaria vaccine would complement existing malaria control measures. A blood stage malaria vaccine candidate, Merozoite Surface Protein-3 (MSP3), produced as a long synthetic peptide, has been shown to be safe in non-immune and semi-immune adults. A phase Ib dose-escalating study was conducted to assess the vaccine's safety and immunogenicity in children aged 12 to 24 months in Korogwe, Tanzania (ClinicalTrials.gov number: NCT00469651). METHODS: This was a double-blind, randomized, controlled, dose escalation phase Ib trial, in which children were given one of two different doses of the MSP3 antigen (15 microg or 30 microg) or a control vaccine (Engerix B). Children were randomly allocated either to the MSP3 candidate malaria vaccine or the control vaccine administered at a schedule of 0, 1, and 2 months. Immunization with lower and higher doses was staggered for safety reasons starting with the lower dose. The primary endpoint was safety and reactogenicity within 28 days post-vaccination. Blood samples were obtained at different time points to measure immunological responses. Results are presented up to 84 days post-vaccination. RESULTS: A total of 45 children were enrolled, 15 in each of the two MSP3 dose groups and 15 in the Engerix B group. There were no important differences in reactogenicity between the two MSP3 groups and Engerix B. Grade 3 adverse events were infrequent; only five were detected throughout the study, all of which were transient and resolved without sequelae. No serious adverse event reported was considered to be related to MSP3 vaccine. Both MSP3 dose regimens elicited strong cytophilic IgG responses (subclasses IgG1 and IgG3), the isotypes involved in the monocyte-dependant mechanism of Plasmodium falciparum parasite-killing. The titers reached are similar to those from African adults having reached a state of premunition. Furthermore, vaccination induced seroconversion in all vaccinees. CONCLUSION: The MSP3 malaria vaccine candidate was safe, well tolerated and immunogenic in children aged 12-24 months living in a malaria endemic community. Given the vaccine's safety and its induction of cytophilic IgG responses, its efficacy against P. falciparum infection and disease needs to be evaluated in Phase 2 studies
Accuracy of Malaria Rapid Diagnostic Tests in Community Studies and their Impact on Treatment of Malaria in an Area with Declining Malaria Burden in North-Eastern Tanzania.
Despite some problems related to accuracy and applicability of malaria rapid diagnostic tests (RDTs), they are currently the best option in areas with limited laboratory services for improving case management through parasitological diagnosis and reducing over-treatment. This study was conducted in areas with declining malaria burden to assess; 1) the accuracy of RDTs when used at different community settings, 2) the impact of using RDTs on anti-malarial dispensing by community-owned resource persons (CORPs) and 3) adherence of CORPs to treatment guidelines by providing treatment based on RDT results. Data were obtained from: 1) a longitudinal study of passive case detection of fevers using CORPs in six villages in Korogwe; and 2) cross-sectional surveys (CSS) in six villages of Korogwe and Muheza districts, north-eastern, Tanzania. Performance of RDTs was compared with microscopy as a gold standard, and factors affecting their accuracy were explored using a multivariate logistic regression model. Overall sensitivity and specificity of RDTs in the longitudinal study (of 23,793 febrile cases; 18,154 with microscopy and RDTs results) were 88.6% and 88.2%, respectively. In the CSS, the sensitivity was significantly lower (63.4%; χ2=367.7, p<0.001), while the specificity was significantly higher (94.3%; χ2=143.1, p<0.001) when compared to the longitudinal study. As determinants of sensitivity of RDTs in both studies, parasite density of<200 asexual parasites/μl was significantly associated with high risk of false negative RDTs (OR≥16.60, p<0.001), while the risk of false negative test was significantly lower among cases with fever (axillary temperature ≥37.5 °C) (OR≤0.63, p≤0.027). The risk of false positive RDT (as a determinant of specificity) was significantly higher in cases with fever compared to afebrile cases (OR≥2.40, p<0.001). Using RDTs reduced anti-malarials dispensing from 98.9% to 32.1% in cases aged ≥5 years. Although RDTs had low sensitivity and specificity, which varied widely depending on fever and parasite density, using RDTs reduced over-treatment with anti-malarials significantly. Thus, with declining malaria prevalence, RDTs will potentially identify majority of febrile cases with parasites and lead to improved management of malaria and non-malaria fevers
Performance of Rapid Diagnostic Test, Blood-film Microscopy and PCR for the Diagnosis of Malaria Infection among Febrile Children from Korogwe District, Tanzania.
Rapid diagnostic tests (RDT) and light microscopy are still recommended for diagnosis to guide the clinical management of malaria despite difficult challenges in rural settings. The performance of these tests may be affected by several factors, including malaria prevalence and intensity of transmission. The study evaluated the diagnostic performance of malaria RDT, light microscopy and polymerase chain reaction (PCR) in detecting malaria infections among febrile children at outpatient clinic in Korogwe District, northeastern Tanzania. The study enrolled children aged 2-59 months with fever and/or history of fever in the previous 48 h attending outpatient clinics. Blood samples were collected for identification of Plasmodium falciparum infection using histidine-rich-protein-2 (HRP-2)-based malaria RDT, light microscopy and conventional PCR. A total of 867 febrile patients were enrolled into the study. Malaria-positive samples were 85/867 (9.8 %, 95 % CI, 7.9-12.0 %) by RDT, 72/867 (8.3 %, 95 % CI, 6.5-10.1 %) by microscopy and 79/677 (11.7 %, 95 % CI, 9.3-14.3 %) by PCR. The performance of malaria RDT compared with microscopy results had sensitivity and positive predictive value (PPV) of 88.9 % (95 % CI, 79.3-95.1 %) and 75.3 % (95 % CI, 64.8-84.0 %), respectively. Confirmation of P. falciparum infection with PCR analysis provided lower sensitivity and PPV of 88.6 % (95 % CI, 79.5-94.7 %) and 84.3 % (95 % CI, 74.7-91.4 %) for RDT compared to microscopy. Diagnosis of malaria infection is still a challenge due to variation in results among diagnostic methods. HRP-2 malaria RDT and microscopy were less sensitive than PCR. Diagnostic tools with high sensitivity are required in areas of low malaria transmission
Bloodstream Bacterial Infection among Outpatient Children with Acute Febrile Illness in North-eastern Tanzania.
Fever is a common clinical symptom in children attending hospital outpatient clinics in rural Tanzania, yet there is still a paucity of data on the burden of bloodstream bacterial infection among these patients. The present study was conducted at Korogwe District Hospital in north-eastern Tanzania. Patients aged between 2 and 59 months with a history of fever or measured axillary temperature ≥37.5°C attending the outpatient clinic were screened for enrolment into the study. Blood culturing was performed using the BACTEC 9050® system. A biochemical analytical profile index and serological tests were used for identification and confirmation of bacterial isolates. In-vitro antimicrobial susceptibility testing was performed using the Kirby-Bauer disc diffusion method. The identification of Plasmodium falciparum malaria was performed by microscopy with Giemsa stained blood films. A total of 808 blood cultures were collected between January and October 2013. Bacterial growth was observed in 62/808 (7.7%) of the cultured samples. Pathogenic bacteria were identified in 26/808 (3.2%) cultures and the remaining 36/62 (58.1%) were classified as contaminants. Salmonella typhi was the predominant bacterial isolate detected in 17/26 (65.4%) patients of which 16/17 (94.1%) were from patients above 12 months of age. Streptococcus pneumoniae was the second leading bacterial isolate detected in 4/26 (15.4%) patients. A high proportion of S. typhi 11/17 (64.7%) was isolated during the rainy season. S. typhi isolates were susceptible to ciprofloxacin (n = 17/17, 100%) and ceftriaxone (n = 13/17, 76.5%) but resistant to chloramphenicol (n = 15/17, 88.2%). P. falciparum malaria was identified in 69/808 (8.5%) patients, none of whom had bacterial infection. Bloodstream bacterial infection was not found to be a common cause of fever in outpatient children; and S. typhi was the predominant isolate. This study highlights the need for rational use of antimicrobial prescription in febrile paediatric outpatients presenting at healthcare facilities in rural Tanzania
Effect of ingested human antibodies induced by RTS, S/AS01 malaria vaccination in children on Plasmodium falciparum oocyst formation and sporogony in mosquitoes.
BACKGROUND: The circumsporozoite protein (CS protein) on the malaria parasites in mosquitoes plays an important role in sporogony in mosquitoes. The RTS,S/AS01 malaria vaccine candidate, which has shown significant efficacy against clinical malaria in a large Phase 3 trial, targets the Plasmodium falciparum CS protein, but the ability of serum from vaccinated individuals to inhibit sporogony in mosquitoes has not been evaluated. METHODS: Previously a double-blind, randomized trial of RTS,S/AS01 vaccine, as compared with rabies vaccine, in five- to 17-month old children in Tanzania was conducted. In this study, polyclonal human antibodies were purified from the pools of sera taken one month after the third vaccination. IgGs were purified from four pools of sera from 25 RTS,S/AS01 vaccinated children each, and two pools of sera from 25 children vaccinated with rabies vaccine each. The ability of antibodies to inhibit P. falciparum oocyst formation and/or sporogony in the mosquito host was evaluated by a standard membrane-feeding assay. The test antibodies were fed on day 0 (at the same time as the gametocyte feed), or on days 3 or 6 (serial-feed experiments). The oocyst and sporozoite counts were performed on days 8 and 16, respectively. In addition, two human anti-CS monoclonal antibodies (mAb) and a control mAb were also evaluated. RESULTS: Polyclonal anti-CS IgG preparations from RTS,S-vaccinated children tested at concentrations of 149-210 ELISA units (EU)/ml did not show significant inhibition in oocyst and sporozoite formation when the antibodies were fed with gametocytes at the same time, or later (serial-feed experiments). Similarly, anti-CS mAbs tested at 6,421 or 7,122 EU/ml did not show reduction in oocyst and sporozoite formation. CONCLUSIONS: This study does not support the concept that anti-CS antibodies induced by the RTS,S/AS01 vaccines in humans noticeably reduce malaria transmission by blocking P. falciparum sporozoite development or salivary gland invasion in mosquitoes when taken up during feeding
Development of a Fetal Weight Chart using Serial Trans-Abdominal Ultrasound in an East African Population: A Longitudinal Observational Study.
To produce a fetal weight chart representative of a Tanzanian population, and compare it to weight charts from Sub-Saharan Africa and the developed world. A longitudinal observational study in Northeastern Tanzania. Pregnant women were followed throughout pregnancy with serial trans-abdominal ultrasound. All pregnancies with pathology were excluded and a chart representing the optimal growth potential was developed using fetal weights and birth weights. The weight chart was compared to a chart from Congo, a chart representing a white population, and a chart representing a white population but adapted to the study population. The prevalence of SGA was assessed using all four charts. A total of 2193 weight measurements from 583 fetuses/newborns were included in the fetal weight chart. Our chart had lower percentiles than all the other charts. Most importantly, in the end of pregnancy, the 10(th) percentiles deviated substantially causing an overestimation of the true prevalence of SGA newborns if our chart had not been used. We developed a weight chart representative for a Tanzanian population and provide evidence for the necessity of developing regional specific weight charts for correct identification of SGA. Our weight chart is an important tool that can be used for clinical risk assessments of newborns and for evaluating the effect of intrauterine exposures on fetal and newborn weight
Independent origin of plasmodium falciparum antifolate super-resistance, Uganda, Tanzania, and Ethiopia.
Super-resistant Plasmodium falciparum threatens the effectiveness of sulfadoxine-pyrimethamine in intermittent preventive treatment for malaria during pregnancy. It is characterized by the A581G Pfdhps mutation on a background of the double-mutant Pfdhps and the triple-mutant Pfdhfr. Using samples collected during 2004-2008, we investigated the evolutionary origin of the A581G mutation by characterizing microsatellite diversity flanking Pfdhps triple-mutant (437G+540E+581G) alleles from 3 locations in eastern Africa and comparing it with double-mutant (437G+540E) alleles from the same area. In Ethiopia, both alleles derived from 1 lineage that was distinct from those in Uganda and Tanzania. Uganda and Tanzania triple mutants derived from the previously characterized southeastern Africa double-mutant lineage. The A581G mutation has occurred multiple times on local Pfdhps double-mutant backgrounds; however, a novel microsatellite allele incorporated into the Tanzania lineage since 2004 illustrates the local expansion of emergent triple-mutant lineages
Expression of a type B RIFIN in Plasmodium falciparum merozoites and gametes
BACKGROUND: The ability of Plasmodium falciparum to undergo antigenic variation, by switching expression among protein variants encoded by multigene families, such as var, rif and stevor, is key to the survival of this parasite in the human host. The RIFIN protein family can be divided into A and B types based on the presence or absence of a 25 amino acid motif in the semi-conserved domain. A particular type B RIFIN, PF13_0006, has previously been shown to be strongly transcribed in the asexual and sexual stages of P. falciparum in vitro. METHODS: Antibodies to recombinant PF13_0006 RIFIN were used in immunofluorescence and confocal imaging of 3D7 parasites throughout the asexual reproduction and sexual development to examine the expression of PF13_0006. Furthermore, reactivity to recombinant PF13_0006 was measured in plasma samples collected from individuals from both East and West African endemic areas. RESULTS: The PF13_0006 RIFIN variant appeared expressed by both released merozoites and gametes after emergence. 7.4% and 12.1% of individuals from East and West African endemic areas, respectively, carry plasma antibodies that recognize recombinant PF13_0006, where the antibody responses were more common among older children. CONCLUSIONS: The stage specificity of PF13_0006 suggests that the diversity of RIFIN variants has evolved to provide multiple specialized functions in different stages of the parasite life cycle. These data also suggest that RIFIN variants antigenically similar to PF13_0006 occur in African parasite populations
- …
