155 research outputs found

    Translational and clinical advances in acute graft-versus-host disease

    Get PDF
    Acute graft-versus-host disease (aGvHD) is induced by immunocompetent alloreactive T lymphocytes in the donor graft responding to polymorphic and non-polymorphic host antigens and causing inflammation in primarily the skin, gastrointestinal tract and liver. aGvHD remains an important toxicity of allogeneic transplantation, and the search for better prophylactic and therapeutic strategies is critical to improve transplant outcomes. In this review, we discuss the significant translational and clinical advances in the field which have evolved based on a better understanding of transplant immunology. Prophylactic advances have been primarily focused on the depletion of T lymphocytes and modulation of T-cell activation, proliferation, effector and regulatory functions. Therapeutic strategies beyond corticosteroids have focused on inhibiting key cytokine pathways, lymphocyte trafficking, and immunologic tolerance. We also briefly discuss important future trends in the field, the role of the intestinal microbiome and dysbiosis, as well as prognostic biomarkers for aGvHD which may improve stratification-based application of preventive and therapeutic strategies

    A Prognostic Score for Patients with Acute Leukemia or Myelodysplastic Syndromes Undergoing Allogeneic Stem Cell Transplantation

    Get PDF
    AbstractAllogeneic hematopoietic stem cell transplantation (SCT) has the potential to cure patients with acute leukemia or myelodysplastic syndromes (MDS), but a number of prognostic factors can influence the outcome of transplantation. At present, no transplantation-specific risk score exists for this patient population. We propose a simple scoring system for patients with acute myelogenous leukemia (AML), acute lymphoblastic leukemia (ALL), or MDS, based on a retrospective analysis of 445 patients undergoing SCT at our institution (divided into training and validation subsets). The score depends on 5 variables: age, disease, stage at transplantation, cytogenetics, and pretransplantation ferritin. It divides patients into 3 groups of comparable size, with 5-year overall survival (OS) of 56% (low risk), 22% (intermediate risk), and 5% (high risk). This prognostic score could be useful in making treatment decisions for individual patients, in stratifying patients entering clinical trials, and in adjusting transplantation outcomes across centers under the new federal reporting rules

    dynamics of immune cell reconstitution in allogeneic hematopoietic cell transplant patients receiving post transplant cyclophosphamide ptcy

    Get PDF
    In the setting of haploidentical hematopoietic cell transplantation (haplo-HCT), post-transplant cyclophosphamide (PTCy) selectively eliminates alloreactive T cells in-vivo, resulting in favorable graft versus host disease (GVHD), non-relapse mortality (NRM) and relapse outcomes. However, few studies have examined the impact of PTCy on immune reconstitution (IR). We quantified IR in 63 patients after haplo-HCT with PTCy, mofetil mycophenolate and tacrolimus (TAC) and compared results to 93 patients with 8/8 HLA matched related or unrelated donors (MD) receiving TAC, methotrexate and sirolimus for GVHD prophylaxis. Both groups received reduced intensity conditioning for hematologic malignancies. The median age of the Haplo-PTCy and MD cohorts was 55 and 57 years. Patient samples were analyzed using multi-color flow cytometry panels to characterize distinct lymphocyte populations. All IR values are expressed as median absolute cell count per μL. One month after HCT, recovery of all T cell subsets (CD3, CD4Tcon, Treg, CD8) was significantly reduced in the PTCy cohort compared to MD (Figure A, B, C). Recovery of CD4Tcon was also reduced at 2 and 3 months after PTCy (p NK cells were lower 1 month after PTCy (52.7 vs 91.1, p=0.08), but were significantly higher at 2, 3 and 6 months (153.4 vs 94.8, p=0.001, 153.7 vs 87.5, p=0.008, 180 vs 102, p=0.01, respectively, Figure D) compared to the MD cohort. Delayed NK cell recovery at 1 month after PTCy was due entirely to reduced numbers of CD56dim NK cells (Figure E). Subsequently recovery of CD56dim NK cells was similar in both cohorts. Recovery of CD56bright NK cells was significantly increased in the PTCy cohort (p Consistent with prior reports, 1 year cumulative incidence of extensive cGvHD was lower in the PTCy cohort compared to the MD cohort, 13% (5-26%, 95% CI) and 40% (30-50%, 95% CI) respectively, p=0.003, without increased NRM (p=0.28) or relapse (p=0.17). In summary, the effect of PTCy on IR was most pronounced 1 month after transplant with significantly delayed recovery of CD3, CD4Tcon, Treg, CD8 and CD56dim NK cells. Slow recovery of CD4Tcon persisted for 3 months and delayed recovery of Treg persisted for 1 year. Beginning 2 months after HCT, recovery of both CD56dim and CD56bright NK cells was more rapid in the PTCy cohort. Further studies will examine the effects of these differences in IR on clinical outcomes such as relapse, infections and GVHD

    Allogeneic stem cell transplantation for acute myeloid leukemia in first complete remission: systematic review and meta-analysis of prospective clinical trials.

    Get PDF
    The optimal treatment of acute myeloid leukemia (AML) in first complete remission (CR1) is uncertain. Current consensus, based on cytogenetic risk, recommends myeloablative allogeneic stem cell transplantation (SCT) for poor-risk but not for good-risk AML. Allogeneic SCT, autologous transplantation, and consolidation chemotherapy are considered of equivalent benefit for intermediate-risk AML

    A Bortezomib-Based Regimen Offers Promising Survival and Graft-versus-Host Disease Prophylaxis in Myeloablative HLA-Mismatched and Unrelated Donor Transplantation: A Phase II Trial

    Get PDF
    AbstractHematopoietic stem cell transplantation (HSCT) recipients lacking HLA-matched related donors have increased graft-versus-host disease (GVHD) and nonrelapse mortality (NRM). Bortezomib added to reduced-intensity conditioning can offer benefit in T cell–replete HLA-mismatched HSCT and may also benefit myeloablative conditioning (MAC) transplants. We conducted a phase II trial of short-course bortezomib plus standard tacrolimus/methotrexate after busulfan/fludarabine MAC in 34 patients with predominantly myeloid malignancies. Fourteen (41%) received 8/8 HLA-matched unrelated donor (MUD) and 20 (59%) received 7/8 HLA-mismatched related/unrelated donor peripheral blood stem cell grafts. Median age was 49 years (range, 21 to 60), and median follow-up was 25 months (range, 11 to 36). The regimen was well tolerated. No dose modifications were required. Neutrophil and platelet engraftment occurred at a median of 14 (range, 10 to 33) and 17 (range, 10 to 54) days, respectively. Median 30-day donor chimerism was 99% (range, 90 to 100), and 100-day grades II to IV and III to IV acute GVHD incidence was 32% and 12% respectively. One-year chronic GVHD incidence was 50%. Two-year cumulative incidence of both NRM and relapse was 16%. Two-year progression-free and overall survival rates were 70% and 71%, respectively. Outcomes were comparable to an 8/8 MUD MAC cohort (n = 45). Immune reconstitution was robust. Bortezomib-based MAC HSCT is well tolerated, with HLA-mismatched outcomes comparable with 8/8 MUD MAC HSCT, and is suitable for randomized evaluation. (clinicaltrials.gov: NCT01323920.

    BK virus-specific T-cell immune reconstitution after allogeneic hematopoietic cell transplantation

    Get PDF
    © 2020 by The American Society of HematologyClinical disease caused by BK virus reactivation is a frequent complication of allogeneic hematopoietic cell transplantation (HCT). Because of the lack of effective antiviral agents, BK virus-specific T cells are emerging as a potential therapy for BK virus disease, but the immune response to BK virus after allogeneic HCT has not been well characterized. Our study describes reconstitution of BK virus-specific T-cell immunity in 77 adult patients after HCT. All patients had urinary symptoms, and urine was tested for BK virus replication; 33 patients were positive for BK virus (cases), and 44 were negative (controls). In BK virus cases, the median time to first positive test was 75 days (range, 2-511). BK virus cases had lower CD4 T-cell counts 3 to 9 months after transplant, but CD8 T-cell counts were similar in cases and controls. BK virus-specific T cells were identified by cytokine flow cytometry in cryopreserved samples collected prospectively. BK virus-specific CD4 T cells producing T helper 1 (Th1) cytokines recovered quickly after HCT. BK virus-specific T cells were detected more frequently in patients with BK virus reactivation at most time points, and CD4 T cells producing Th1 cytokines were more frequent than BK virus-specific cytolytic CD8 T cells. Early detection of interferon-γ+ and cytolytic BK virus-specific CD4 T cells was associated with lower rates of hematuria among cases. Overall, our study describes recovery of BK virus-specific T cells after HCT and the distinct roles for BK virus-specific T cells in the development and resolution of clinical symptoms.This work was supported by a Collaborative Research Grant from the Harvard Medical School–Portugal Program in Translational Research HMSP-ICT/0001/201, National Institutes of Health, National Cancer Institute grants CA183559, CA183560, and CA229092, and the Pasquarello Tissue Bank in Hematologic Malignancies. E.E. is a PhD candidate at Universidade de Lisboa, and this work is submitted in partial fulfillment of the requirement for a PhD and was supported by a grant for medical fellows enrolled in a PhD program (Subsídios aos Internos Doutorandos–SINTD) from Fundação para a Ciência e Tecnologia, number SFRH/SINTD/135312/2017info:eu-repo/semantics/publishedVersio
    • …
    corecore